# **B-Nimis SC-1000**

Modular safety PLC for the B-Nimis I/O system (formerly E-I/O Safety PLC)



# **Original Operating Instructions**

Product number S-01060101-0000



#### Copyright © Berghof Automation GmbH

Reproduction and distribution of this document, together with use and communication of its contents, is not permitted except with our express prior permission. All rights reserved.

Infractions render the offender liable to pay damages.

#### **Disclaimer of Liability**

The contents of the publication have been checked for compliance with the hardware and software that are described. Deviations however cannot be entirely excluded, so we undertake no guarantee of complete compliance. The data in this publication are regularly checked and any necessary corrections are incorporated in subsequent issues.

#### **Trademarks**

- → Microsoft®, Windows® and the Windows® logo are registered trademarks of Microsoft Corp. in the USA and other countries. in the USA and other countries.
- → EtherCAT® (incl FSoE) is a registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany.
- → PLCopen® is a registered trademark of the PLCopen Association.

Title to all companies and company names mentioned herein as well as to products and product names is held by the respective enterprises.

#### **About this User Manual**

This user manual is intended for qualified specialists and contains the information necessary for the correct use of the product.

For proper understanding and error-free application of technical descriptions, instructions for use and particularly of notes of danger and warning, extensive knowledge of automation technology and functional safety is compulsory.

# **Table of Contents**

| ORIGI            | NAL OPERATING INSTRUCTIONS                      | 1  |
|------------------|-------------------------------------------------|----|
| TABLI            | OF CONTENTS                                     | 3  |
| 1.               | LEGAL NOTICE                                    | 7  |
| 1.1.             | Contact Details                                 | 7  |
| 1.2.             | Version Details                                 | 7  |
| 1.2.1.           |                                                 |    |
| 1.2.2.           | B-Nimis SC-1000 Safety PLC                      | 8  |
| 1.2.3.           | Terms used                                      | 8  |
| 2.               | PREFACE                                         | 9  |
| 2.1.             | About this User Manual                          | 9  |
| 2.1.1.           | Limitation of Liability                         | 9  |
|                  | Conditions of delivery                          |    |
|                  | Copyright                                       |    |
|                  | Warranty  Symbols and means of portrayal        |    |
|                  |                                                 |    |
| <b>2.2.</b>      | Reliability, Safety  Area of application        |    |
|                  | Target groups of this User Manual               |    |
|                  | Hazards and Other Warnings                      |    |
|                  | Other Notices                                   |    |
|                  | Safety                                          |    |
|                  | Project Planning and Installation               |    |
|                  | Maintenance and Servicing                       |    |
| 2.2.8.           | General Instructions on Installation            | 13 |
| 3.               | SYSTEM DESCRIPTION                              |    |
| 3.1.             | Control system – functional overview            | 16 |
| 3.2.             | EtherCAT® – Ethernet Control                    | 16 |
| 3.3.             | B-Nimis I/O System                              | 17 |
|                  | , -,                                            | 18 |
|                  | Safety over EtherCAT (FSoE)                     |    |
|                  | Safety PLC                                      |    |
|                  | CODESYS SafetyPLCopen Safety Library in CODESYS |    |
| 3.4.4.           | PLCoperi Salety Library III CODES 15            | 19 |
| 4.               | PRODUCT DESCRIPTION                             |    |
| 4.1.             | Product Description Safety PLC                  |    |
| 4.2.             | Application                                     |    |
| 4.2.1.<br>4.2.2. | Intended Use                                    |    |
|                  | Disclaimer of Liability                         |    |
| 4.3.             | Safe State                                      |    |
|                  | Safe Functional State                           |    |
|                  |                                                 |    |

| 4.3.2.       | Fail-Safe State                                        | 23 |
|--------------|--------------------------------------------------------|----|
| 4.3.3.       | Traceability                                           | 24 |
| 4.4.         | Useful Life                                            | 24 |
| 4.5.         | Technical Data                                         | 25 |
| 4.5.1.       | General specifications                                 | 25 |
| 4.5.2.       | Size of the FSoE data frame                            |    |
| 4.5.3.       | Setting the cycle time for the safety application      | 27 |
|              | Response Time                                          |    |
|              | Size                                                   |    |
| 4.6.         | Transport and Storage                                  |    |
| 5.           | CONSTRUCTION AND FUNCTIONALITY                         | 32 |
|              |                                                        |    |
| 5.1.         | Labelling and Identification                           |    |
| 5.1.1.       | '                                                      |    |
| 5.1.2.       | Serial number                                          | 33 |
| 5.2.         | Scope of delivery                                      | 33 |
| 5.3.         | Status LEDs                                            | 34 |
| 5.4.         | Operating Software                                     | 35 |
| 6.           | INSTALLATION AND OPERATION                             | 36 |
| 6.1.         | Mechanical Installation                                | 36 |
| 6.1.1.       | Installation position                                  | 37 |
|              | E-bus Plug Connector and Module Lock                   |    |
|              | Snapping on a Single Module                            |    |
|              | Interconnecting two modules                            |    |
|              | Disconnecting two modules                              |    |
| 6.1.6.       | Removing a single module                               | 39 |
| 6.2.         | Electrical Installation                                | 40 |
|              | Earth                                                  |    |
|              | Interconnection between modules                        |    |
|              | System Power Supply to the row of modules              |    |
|              | Initial commissioning                                  |    |
| <b>6.3</b> . | Configuration                                          |    |
|              | •                                                      |    |
| 6.4.         | Installing the Software                                |    |
|              | Installing the Safety Extension                        |    |
|              | Installing the Safety Device Description               |    |
|              | Creating a safety project                              |    |
|              | Safety PLC - logging in and downloading an application |    |
|              | Safety PLC – FSoE (Safety over EtherCAT)               |    |
| 6.4.6.       | Configuration of the FSoE slave ID in the Safety PLC   | 54 |
| 6.5.         | Validation of the safety function                      |    |
| 6.6.         | Diagnostics                                            |    |
| 6.6.1.       |                                                        |    |
|              | Faults within the Safety PLC module                    |    |
|              | Temperature Faults                                     |    |
| 6.6.4.       | Error Handling and Logging                             | 57 |
| 6.7.         | Resetting/acknowledging an error                       | 58 |
| 6.8          | Maintenance / Servicing                                | 59 |

| 6.8.1.                                                         | General                                                                                                                                                                                                          | 59                               |
|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| 6.8.2.                                                         | Servicing                                                                                                                                                                                                        | 59                               |
| 6.9.                                                           | Replacement of a Safety PLC                                                                                                                                                                                      | 60                               |
| 6.9.1.                                                         | Replacement                                                                                                                                                                                                      |                                  |
| 6.9.2.                                                         | Recommissioning                                                                                                                                                                                                  | 60                               |
| 6 10                                                           | Working Life                                                                                                                                                                                                     | 61                               |
|                                                                | Repairs / Customer Service                                                                                                                                                                                       |                                  |
|                                                                | Warranty                                                                                                                                                                                                         |                                  |
|                                                                | Decommissioning                                                                                                                                                                                                  |                                  |
|                                                                | Disposal                                                                                                                                                                                                         |                                  |
|                                                                |                                                                                                                                                                                                                  |                                  |
| 7.<br>7.1.                                                     | APPENDIX                                                                                                                                                                                                         |                                  |
|                                                                | Communications objects                                                                                                                                                                                           |                                  |
| <b>7.2</b> .                                                   | ·                                                                                                                                                                                                                |                                  |
|                                                                | Device Type 1000 h                                                                                                                                                                                               |                                  |
|                                                                | Error Register 1001 <sub>h</sub>                                                                                                                                                                                 |                                  |
|                                                                | Hardware Version 1009 <sub>h</sub>                                                                                                                                                                               |                                  |
|                                                                | Software Version 100Ah                                                                                                                                                                                           |                                  |
|                                                                | CANopen 'Restore default parameters obj. 1011h                                                                                                                                                                   |                                  |
|                                                                | Identity Object 1018h                                                                                                                                                                                            |                                  |
|                                                                | Error Settings (not used) 10F1 <sub>h</sub>                                                                                                                                                                      |                                  |
|                                                                | Sync Manager Type (not used) 1C00 <sub>h</sub>                                                                                                                                                                   |                                  |
|                                                                | SM out par (not used) 1C32 <sub>h</sub>                                                                                                                                                                          |                                  |
|                                                                | SM in par (not used) 1C33 <sub>h</sub>                                                                                                                                                                           |                                  |
| 7.3.                                                           | Manufacturer-specific objects                                                                                                                                                                                    |                                  |
|                                                                | MC 1: Reference Voltage [mV] 2000h                                                                                                                                                                               |                                  |
|                                                                | MC 1: 5 V Supply Voltage [mV] 2002 <sub>h</sub>                                                                                                                                                                  |                                  |
|                                                                | MC 1: 3.3 V Supply Voltage [mV] 2003h                                                                                                                                                                            |                                  |
|                                                                | Temperature sensor [0.01°C] 2006 <sub>h</sub>                                                                                                                                                                    |                                  |
|                                                                | MC 1: Error code 2007h                                                                                                                                                                                           |                                  |
|                                                                | MC 1: Error line 2008 <sub>h</sub>                                                                                                                                                                               |                                  |
|                                                                | MC 1: Error module 2009 <sub>h</sub>                                                                                                                                                                             |                                  |
|                                                                | MC 1: Error class 200A <sub>h</sub>                                                                                                                                                                              |                                  |
|                                                                | MC 1: System Uptime [s] 200Ch                                                                                                                                                                                    |                                  |
|                                                                | Read / write world time [s] (LOG Time) 200Dh                                                                                                                                                                     |                                  |
| 7.3.11.                                                        | MC 3: 3,3 V Supply Voltage [mV] 2013 <sub>h</sub>                                                                                                                                                                | 81                               |
| 7.3.12.                                                        | Temperatur warning 2016 <sub>h</sub>                                                                                                                                                                             | 82                               |
| 7.3.13.                                                        | MC 1: LZS component ID 2017 <sub>h</sub>                                                                                                                                                                         | 82                               |
| 7.3.14.                                                        | MC 1: LZS file ID 2018 <sub>h</sub>                                                                                                                                                                              | 83                               |
| 7.3.15.                                                        | MC 1: LZS line 2019h                                                                                                                                                                                             | 83                               |
| 7.3.16.                                                        | MC 1: Read number of CORA test cycles 201A <sub>h</sub>                                                                                                                                                          | 83                               |
| 7047                                                           | ·                                                                                                                                                                                                                | -                                |
|                                                                | MC 1: Read number of file system test cycles 201B <sub>h</sub>                                                                                                                                                   | 84                               |
| 7.3.18.                                                        | MC 1: Read number of IAR test cycles 201C <sub>h</sub>                                                                                                                                                           | 84<br>84                         |
| 7.3.18.<br>7.3.19.                                             | MC 1: Read number of IAR test cycles 201Ch                                                                                                                                                                       | 84<br>84<br>84                   |
| 7.3.18.<br>7.3.19.<br>7.3.20.                                  | MC 1: Read number of IAR test cycles 201Ch  SW Build No 210Ah  Read MC 3 error 2210h                                                                                                                             | 84<br>84<br>84<br>85             |
| 7.3.18.<br>7.3.19.<br>7.3.20.<br>7.3.21.                       | MC 1: Read number of IAR test cycles 201Ch                                                                                                                                                                       | 84<br>84<br>84<br>85<br>86       |
| 7.3.18.<br>7.3.19.<br>7.3.20.<br>7.3.21.<br>7.3.22.            | MC 1: Read number of IAR test cycles 201Ch                                                                                                                                                                       | 84<br>84<br>85<br>86<br>89       |
| 7.3.18.<br>7.3.19.<br>7.3.20.<br>7.3.21.<br>7.3.22.<br>7.3.23. | MC 1: Read number of IAR test cycles 201Ch  SW Build No 210Ah  Read MC 3 error 2210h  Read MC 1 runtimes 2220h  MC 3 main loop cycle time and max cycle time 2221h  Free disk space / app size information 2230h | 84<br>84<br>85<br>86<br>89       |
| 7.3.18.<br>7.3.19.<br>7.3.20.<br>7.3.21.<br>7.3.22.<br>7.3.23. | MC 1: Read number of IAR test cycles 201Ch                                                                                                                                                                       | 84<br>84<br>85<br>86<br>89<br>90 |

| 7.4.   | Objects - For Internal Use Only | 95  |
|--------|---------------------------------|-----|
| 7.5.   | Standards Complied With         | 96  |
|        | Product Standard Applied        |     |
| 7.5.2. | Safety Standards and Directives | 96  |
| 7.5.3. | EMC Standards                   | 96  |
| 7.6.   | Regulations and Declarations    | 97  |
| 7.6.1. | Declaration ofConformity        | 97  |
| 7.6.2. | TÜV Certificate                 | 98  |
| 7.7.   | List of figures                 | 99  |
| 8.     | CUSTOMER SERVICE / ADDRESSES    | 100 |
| 8.1.   | Customer Service                | 100 |

# 1. Legal Notice

### 1.1. Contact Details

Berghof Automation GmbH
Arbachtalstr. 26
72800 Eningen
Germany
T +49.7121.894-0
F +49.7121.894-100
E-mail: controls@berghof.com
www.berghof.com

### 1.2. Version Details

#### 1.2.1. **Manual**

| Revision history |            |                                                                                                                                                                                          |
|------------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Version          | Date       | Comments / changes                                                                                                                                                                       |
| 1.0              | 19.09.2017 | First issue                                                                                                                                                                              |
| 1.10             | 11.08.2017 | Safety ratings updated after review by TÜV Rheinland                                                                                                                                     |
| 1.20             | 16.11.2017 | Declaration of Conformity and TÜV certification added                                                                                                                                    |
| 1.30             | 14.05.2018 | Objects 210A <sub>h</sub> "SW Build No." and 2212 <sub>h</sub> "Post Result Flag" added. User instructions for Safety Task time settings added. Note on the Safety ERRATA sheet inserted |
| 1.40             | 05.02.2020 | Chap. 7.3.20 Read MC 3 Error 2210h updated. For details see ERRATA Sheet.                                                                                                                |
| 1.50             | 14.06.2022 | Changed Module Description - B-Nimis SC-1000<br>Changed Partnumber - S-01060101-0000                                                                                                     |

## 1.2.2. B-Nimis SC-1000 Safety PLC

The table below describes the relationship between the module releases (module versions) and the corresponding manual version.

| Module re | Module release |                    |                                                                                       |  |  |
|-----------|----------------|--------------------|---------------------------------------------------------------------------------------|--|--|
| Version   | Manual         | Date               | Comments / changes                                                                    |  |  |
| V 1.00    | V 1.20         | From<br>16.11.2017 | Initial release / valid for module release V 1.00                                     |  |  |
| V 1.04    | V 1.40         | From<br>14.05.2018 | Manual updated                                                                        |  |  |
| V 1.04    | V 1.50         | From<br>14.06.2022 | Changes of module name and Partnumber (in function and design identical to 204909000) |  |  |

#### 1.2.3. Terms used

| Term                       | Explanation                                                           |
|----------------------------|-----------------------------------------------------------------------|
| Safety PLC                 | The Safety PLC described in this document                             |
| Standard PLC               | The main PLC of the system, which provides the EtherCAT Master.       |
| CODESYS                    | The programming environment for the main PLC                          |
| Safety Package             | CODESYS Safety extension                                              |
| PLCopen Safety             | Certified library of safety function blocks                           |
| B-Nimis I/O System         | B-Nimis I/O module family                                             |
| B-Nimis PLC                | PLC for the B-Nimis I/O System                                        |
| Head module                | General designation for bus couplers or small PLCs in the B-Nimis I/O |
|                            | System                                                                |
| CODESYS Safety extension   | Certified safety programming environment                              |
| Logical exchange variables | These serve to exchange information between the safety PLC and the    |
|                            | standard PLC (see CODESYS Safety user guide)                          |

# 2. Preface

#### 2.1. About this User Manual

This document is the user manual for the safety PLC module with the product number S-01060101-0000 (in function and design identical to 204909000).

When working with the module, always refer to the CODESYS Safety user guide, in the corresponding version certified for use with CODESYS Safety Runtime 1.2.0 (4.1.2.0), published by 3S-Smart Software Solutions GmbH.

This document is intended for the target group described in section 2.2.2 Target groups of this User . It does not contain any information about deliveries. We reserve the right to make changes and correct errors and omissions. Illustrations are similar.



Refer to the Safety ERRATA document for the current relevant safety warnings.

The current version con be found on our home page

https://www.berghof-automation.com

Under Products → Safety PLCs → General Information

### 2.1.1. Limitation of Liability

Specifications are only for product description and are not to be understood as guaranteed product properties in a legal sense. Exact properties and characteristics shall be agreed in the specific contract. Claims for damages against us - on whatever grounds - are excluded, except in instances of deliberate intent or gross negligence on our part.

#### 2.1.2. Conditions of delivery

The general conditions of sales and service of Berghof Automation GmbH shall apply.

#### 2.1.3. Copyright

Copyright © Berghof Automation GmbH

This user manual is protected by copyright.

No part of this document may be reproduced or copied in any way or by any means except expressly permitted in writing by Berghof Automation GmbH.

Microsoft®, Windows® and the Windows® logo are registered trademarks of Microsoft Corp. in the USA and other countries.

EtherCAT® is a registered brand and patented technology, licensed by Beckhoff Automation GmbH, Germany.

Safety over EtherCAT is a registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany.

### 2.1.4. Warranty

Warranty is subject to the provisions of the conditions of sale of Berghof Automation GmbH or any contractual agreements between the parties.

The warranty will be voided by:

- → improper assembly and use,
- → repairs or inadmissible servicing,
- → opening the module housing,
- → modifying, defacing or removing the serial number.

### 2.1.5. Symbols and means of portrayal

The following symbols and means of portrayal are used in this User Manual:

| Symbol      | Explanation                                                                                                        |
|-------------|--------------------------------------------------------------------------------------------------------------------|
| <b>→</b>    | List entry                                                                                                         |
| <b>&gt;</b> | Individual operational instructions or list with operational instructions, which can be displayed in any sequence. |
| 1<br>2      | List with operational instructions, which can be displayed in any sequence.                                        |
| i           | Further information on the product                                                                                 |

### 2.2. Reliability, Safety

#### 2.2.1. Area of application

This user manual contains all the information you need to use the product described as intended.

#### 2.2.2. Target groups of this User Manual

The user manual is written for design, project planning, servicing and commissioning experts. For proper understanding and error-free application of technical descriptions, instructions for use and particularly of notes of danger and warning, extensive knowledge of automation technology and functional safety is compulsory.

#### 2.2.3. Hazards and Other Warnings

Despite the actions described in section 2.2.5 Safety, the occurrence of faults or errors in electronic control units - however improbable - must be taken into consideration.

Please pay particular attention to the additional notices which we have marked by symbols throughout this user manual. While some of these notices make you aware of possible dangers, others are intended as a means of orientation. They are described below in descending order of importance.

Every alert and hazard warning is made up as follows:



Optional: Type and source of risk

Other symbols Brief description and potential consequences of non-observance

▶ Preventive measures

The signal terms described below are used for warning instructions which you must comply with for your personal safety and for avoiding damage to property.



A DANGER warning makes you aware of an immediately hazardous situation which WILL cause a serious or fatal accident if not observed.

## **WARNING**

A WARNING makes you aware of a potentially hazardous situation which MAY cause a serious or fatal accident or damage to this or other devices if not observed.

### **A** CAUTION

A CAUTION alert makes you aware of a potentially hazardous situation which MAY cause an accident or damage to this or other devices if not observed.

#### 2.2.4. Other Notices



Note, Information

This symbol draws your attention to additional information concerning the use of the described product. This may include cross references to information found elsewhere (e.g. in other manuals).

#### 2.2.5. Safety

Our products normally become part of larger systems or installations. The information below is intended to help you integrate the product into its environment without dangers to people or materials/equipment.



#### **DANGER**

#### Non-compliance with the user manual

Measures for the prevention of dangerous faults or errors may be rendered ineffective or new hazard sources created.

- Read the user manual carefully.
- Take particular heed of the hazard warnings.



To achieve a high degree of conceptual safety in planning and installing an electronic control unit, it is essential to exactly follow the instructions given in the user manual because wrong handling could lead to rendering measures against dangers ineffective or to creating additional dangers.

#### 2.2.6. Project Planning and Installation

- → Safety and precautions regulations for qualified applications must be complied with.
- → Please pay particular attention to the notices of warning which, at relevant places, will make you aware of possible sources of dangerous mistakes or faults.
- → Relevant standards and VDE regulations must be complied with in every case.
- → Control elements are to be installed in such a way as to exclude unintended operation.

#### 2.2.7. Maintenance and Servicing

- → Accident prevention regulations (in Germany: BGV A3 VBG 4.0) must be observed when measuring or checking a control unit after power-up, in particular §8 (permissible deviations when working on parts).
- → The B-Nimis SC1000 Safety PLC Module is maintenance-free, there are no spare parts available
- → Repair work on the B-Nimis SC-1000 Safety PLC Module is not permitted. In the event of a defect, return the module to Berghof Automation GmbH, with a description of the fault.
- → Installation, and changes to the connections, may be performed only in the de-energised state.

  Otherwise damage the modules may be seriously damaged or their functionality impaired.

  In addition, unexpected hazardous situations may arise, which can lead to accidents.

#### 2.2.8. General Instructions on Installation

As component parts of machines, facilities and systems, electronic control systems must comply with valid rules and regulations, depending on their field of application.

General requirements concerning the electrical equipment of machines and aiming at the safety of these machines are contained in Part 1 of European Standard EN 60204 (corresponds to VDE 0113).



For safe installation of the B-Nimis SC-1000 Safety-PLC module, the instructions described in section 6 Installation and Operation must be complied with.

#### **Emission of interference**

Emission of electromagnetic field interference, HF to EN 55011, limit value class A, Group 1



If the control unit is used in residential areas, high-frequency emissions must comply with limit value class B as described in EN 55011.

A shielding compliant to the above standard can for instance be achieved by fitting the control unit into earthed metal cabinets and installing filters in the supply lines.

The design and immunity to interference of programmable logic controllers are internationally governed by standard IEC 61131-2:2007 which, in Europe, has been the basis for European Standard EN 61131-2:2007.



Refer to IEC 61131-4, User's Guideline, for general installation instructions to be complied with to ensure that hardware interface factors and the ensuing interference voltages are limited to tolerable levels.

#### Protection against the effects of external electrical interference

► To eliminate electromagnetic interference, connect the control system to the protective earth conductor.

#### Cable routing and wiring

▶ Route power circuits separately from control circuits:

DC voltages 60...400 V AC voltages 25...400 V

Route only the following control circuits together:

Shielded data signals

Shielded analogue signals

Shielded Digital I/O cables

Unshielded DC voltages < 60 V

Unshielded AC voltages < 25 V

#### Location of installation

► Ensure that temperatures, contaminations, impact, vibration or electromagnetic interference are no impediment to the installation.

#### **Temperature**

Take heat sources into account: general heating of rooms, sunlight, heat accumulation in assembly rooms or control cabinets.

#### Contamination

▶ Use suitable enclosures to avoid possible negative influences due to humidity, corrosive gas, liquid or conducting dust (such as installation in a suitable control cabinet).

#### Impact and vibration

Consider possible influences caused by motors, compressors, transfer lines, presses, ramming machines and vehicles.

#### Electromagnetic interference

Consider electromagnetic interference from various local sources: motors, switching devices, switching thyristors, radio-controlled devices, welding equipment, arcing, switched-mode power supplies, converters / inverters.

# 3. System Description

The purpose of the Safety PLC is to integrate functional safety functions into control systems. There is no need for separate cables for the safety circuits. The Safety PLC has the duty of executing the safety application program and exchanging safety-related control information with the safe slave modules assigned to it.



Fig. 1: Safety PLC

A pre-requirement for the use of the Safety PLC is the use of a supervisory PLC based on CODESYS, referred to below as the main PLC, together with EtherCAT as a field bus for data exchange.

### 3.1. Control system - functional overview

The diagram below depicts an example of a control system with a Safety PLC.

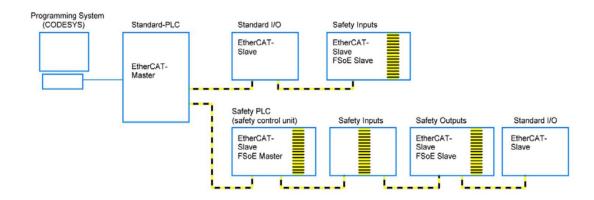



Fig. 2: System overview

The programming PC with the programming system programs the standard PLC via the Ethernet connection. One or more Safety PLCs can then be programmed by the standard PLC via the EtherCAT field bus.

When the system is in operation, process data are exchanged between the standard PLC and the standard actuators and sensors.

At the same time the Safety PLC uses the EtherCAT field bus and the FSoE protocol to exchange safety-relevant signals with safe I/O modules or drives.

### 3.2. EtherCAT® – Ethernet Control

EtherCAT is an Ethernet-based field bus system. Its speed, flexible topology and ease of configuration make it suitable for use as a quick drive and I/O bus for control units (industrial PCs or PLCs). Its interconnections between the controller at one end and both the I/O modules and drives at the other are as fast as those of a backplane bus. EtherCAT control units thus act virtually as centralised control systems.

### 3.3. B-Nimis I/O System

The Safety PLC is a module within the B-Nimis I/O system. The B-Nimis I/O system is a collection of I/O modules which can be stacked in a row for incorporation into an EtherCAT network for transmission of process signals.

The B-Nimis I/O bus coupler acts as the head module which converts the transmission from twisted pair into LVDS (E-bus) and generates the system voltages required by the LVDS modules. The standard 100 Base Tx lines are connected to the one side. a succession of B-Nimis I/O modules are arranged in a row for the process signals connect to the other side. This is how the EtherCAT protocol is retained right through to the last I/O module.

Instead of the bus coupler a B-Nimis PLC can also be used as the head module. This then takes over the function of bus master from the standard PLC.

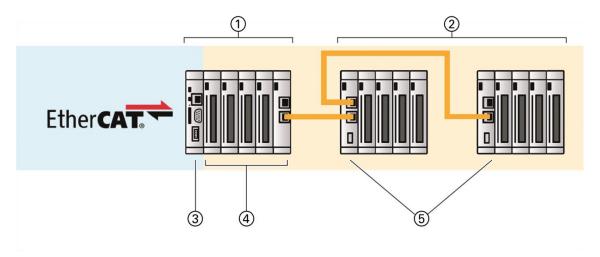



Fig. 3: B-Nimis I/O system

| Item | Designation                                    | Item | Designation       |
|------|------------------------------------------------|------|-------------------|
| 1    | PLC with B-Nimis I/O expansion modules         | 4    | Expansion Modules |
| 2    | Bus coupler with B-Nimis I/O expansion modules | 5    | Bus coupler       |
| 3    | B-Nimis PLC                                    |      |                   |

### 3.4. B-Nimis-I/O Safety System

The B-Nimis-I/O safety system extends the B-Nimis I/O system by means of the Safety PLC and modules with safe inputs and outputs described here. There is no need to provide separately cabled safety circuits. The EtherCAT protocol is used to transfer both safe and standard signals to the Safety PLC. This integrated transfer process is based on the certified FSoE safety protocol.

#### 3.4.1. Safety over EtherCAT (FSoE)

Along with EtherCAT, a safety protocol was developed and made available for EtherCAT as "Safety over EtherCAT" (FSoE = Fail Safe over EtherCAT). It is the backbone of providing functional safety over EtherCAT. Both the protocol and its implementation are certified to comply with Safety Integrity Level 3 (SIL 3) to IEC 61508. Since 2010, Safety over EtherCAT has been defined in an international standard, IEC 61784-3-12.

Since EtherCAT is used as the medium of communication, Safety over EtherCAT does not impose any constraints regarding the transfer rate and cycle time. The transport medium is considered a "black channel" which is disregarded in the safety assessment.



Fig. 4: FSoE Logo

#### 3.4.2. Safety PLC

The Safety PLC links the inputs and outputs of the B-Nimis-I/O safety system and the safety-relevant signals of other FSoE devices within the system.

It operates at all time in conjunction with a supervisory CODESYS-based PLC, here referred to as the standard PLC.

The Safety PLC has a two channel architecture. It communicates to the programming system via the standard PLC and the logical exchange variables (see CODESYS Safety user guide - "Logical I/Os") and to the standard PLC using non-safe variables, input and outputs.

#### 3.4.3. CODESYS Safety

The Safety PLC is based on a certified plug-in that is fully integrated in the CODESYS Development System.

The Safety PLC is programmed as an EtherCAT slave node under the standard PLC and provides an application, task, lists of global variables, POUs and logical I/Os. It fulfils all the functions described in version 1.2.0 of the CODESYS® Safety user manual. The only restriction: The integration operates only in conjunction with EtherCAT as a communications medium to the Safety PLC.

The integrated function diagram (FD) safety editor (to IEC 61131-3, certified for use with IEC 61508 SIL3 applications) is used for basic or extended-level programming by means of certified function blocks (IEC 61131-3 or PLCopen Safety) as specified in the CODESYS Safety user manual.

At the basic level, certified function blocks (PLCopen-Safety) are graphically "wired up" to establish the system's safety programme. In case that a project demands more than the technology of the certified blocks can provide, the extra instructions available at the extended level can be used to expand the safety programme.

The software offers further functions for safeguarding the safety functions by change tracking, safe flow of signals, safe version control (pinning), separating safe operation, debugging mode, etc.



Fig. 5: CODESYS-Logo

#### 3.4.4. PLCopen Safety Library in CODESYS

The PLCopen components have been defined and certified by the PLCopen organisation, its members and external organisations specialising in all safety-related aspects. The components interlink by logical operations which behave like logical wiring and therefore so that a safety application using these components can be programmed reliably.



Of itself the use of certified safe blocks is not sufficient to ensure that the user program is error-free. Each program must be developed for the relevant safety functions and exhaustively tested.

# 4. Product Description

### 4.1. Product Description Safety PLC

The Safety PLC allows the integration of safety functions into a control system. The core of the Safety PLC consists of two microprocessors which implement the safety functions and communicate with each other to exchange process data and to mutually monitor each other. A third microprocessor manages the external communications.

Modules can be installed in a row for incorporation in an B-Nimis I/O system. The module is designed for installation on a DIN rail within a control cabinet.

#### Overview



Fig. 6: External features of the Safety PLC Module

| Item | Designation    | Item | Designation                             |
|------|----------------|------|-----------------------------------------|
| 1    | Grip           | 5    | Screen connection to housing            |
| 2    | Labelling clip | 6    | DIN rail attachment and effective earth |
| 3    | Unlock button  | 7    | Module lock, E-bus                      |
| 4    | Status LEDs    | 8    | Ventilation slots                       |

The housing mount consists of an aluminium profile with an integrated clamping fixture used to attach the module to a 35 mm DIN rail. The housing trough including the optical fibres for the status indicators, the side faces and the front are made of plastic and contain the module.

### 4.2. Application

#### 4.2.1. Intended Use

The B-Nimis I/O system is a system of I/O modules for interconnecting the process signals in an EtherCAT network. It consists of the bus coupler and a range of I/O modules. The B-Nimis I/O Safety System with B-Nimis SC-1000 Safety PLC and the B-Nimis I/O Safety Modules extend the B-Nimis I/O System by adding functions which permit use in the field of the functional safety of machines.

The intended applications of the B-Nimis safety system include safety functions of machines or systems and all industrial automation tasks immediately associated with them. Thus the system may only be used for applications providing a defined fail-safe state. The defined fail-safe state of the system is the de-energised state. Running any of the safety-related control components is subject to the safety precautions applicable to industrial control units (guarded by emergency stop and similar safety equipment) as specified by the relevant national and/or international regulations. The same applies to connected equipment such as drives or light grids.

Before installing and putting the system into operation, the safety instructions, connection specifications (nameplate and documentation) and the limiting values listed in this user guide's Technical Data section must be read carefully and complied with in every respect. The system is not designed for applications causing potentially fatal risks or dangers to the life and health of many persons or disastrous ecological hazards unless exceptionally strict safety precautions are taken. In particular, the system is unsuitable for applications such as the monitoring of nuclear reactions in nuclear power stations as well as the control of flight or air traffic control systems, means of mass transit, medical life support systems and weapon systems and its use is not allowed.

In particular, its use is approved only in the context of the relevant Machinery Directive (Directive 2006/42/EU).

### **WARNING**

#### Impairment of safety due to the use of unsuitable EtherCAT modules!

► The B-Nimis SC-1000 Safety-PLC module may be operated only in conjunction with bus modules which conform to ETG.

### **A** WARNING

#### Impairment of safety due to the use of unsuitable FSoE slave modules!

► The B-Nimis SC-1000 Safety-PLC module may be operated only in conjunction with certified FSoE slaves which conform to FSoE.

#### 4.2.2. Qualified Persons

The safety-related products may be used only by the following persons:

- Qualified persons who know the applicable concepts of functional safety as well as the relevant standards and regulations.
- $\rightarrow$ Qualified persons who plan, design, install and put machine and system safety equipment into operation.

Qualified persons in the sense of this User Manual are persons whose training, experience, instructions and knowledge of the applicable standards, codes, accident prevention regulations and operating conditions authorise them to perform the required work and enable them to recognise and avoid potential hazards associated with that work. Language skills sufficient to understand this Guide are therefore part of this qualification.



#### WARNING

#### Incorrect operation by unqualified personnel!

Only qualified persons are allowed to install and program the B-Nimis SC-1000 Safety-PLC module.

#### 4.2.3. Disclaimer of Liability

The operator is responsible for self-reliantly running the safety-related control components in conformity with the requirements set by the competent authority.

The manufacturer shall neither be held liable nor accept any warranty for damages caused by:

- $\rightarrow$ inappropriate use,
- $\rightarrow$ non-compliance with standard and directives,
- $\rightarrow$ unauthorised modifications of devices, connections or settings,
- $\rightarrow$ use of unapproved or unsuitable equipment or equipment groups,
- $\rightarrow$ non-observance of the safety instructions contained in this manual.

#### 4.3. Safe State

There are two different types of "safe states":

- The first one is functional and depends on the machine's application, operation and software. This is the desired functional safe state. The system is operating free of defects.
- → The second one is the fail-safe state and is adopted whenever a fault or error occurs in any of the monitored components.

#### 4.3.1. Safe Functional State

The Safe Functional State is the state of defect-free working operation.

This state also includes situation where modules associated with the Safety PLC are reporting a fault. In general these do not lead to exiting the functional safe state, instead they are dealt with in relation to the safety application (e.g. loss of communication to a safe I/O module).

#### 4.3.2. Fail-Safe State

#### **Internal Fault**

The Fail-Safe State of the Safety PLC is the state in which no valid FSoE telegrams are being sent to the participating FSoE slaves. If valid FSoE telegrams are outstanding the FSoE slaves adopt the safe state (de-energised outputs).

Internal faults which pose a safety hazard lead to the stoppage of FSoE communication, and thus trigger a switch into the fail-safe state. FSoE communication is then stopped. Insofar as this is possible, EtherCAT communication remains active and permits diagnostic activities.

#### **External Fault**

The module monitors its supply voltage (overvoltage and undervoltage) and also the permissible operating temperature. It any of these strays outside the permissible range the Safety PLC switches to the fail-safe state and no more FSoE telegrams are sent out.

#### Exiting the fail-safe state

The fail-safe state can be exited only by switching off the power supply to the head module (bus coupler or PLC). When the system is switched on again it performs a complete self-test as part of the initialisation phase.

In accordance with the FSoE specification, when no correct FSoE telegram is received within the watchdog expiry time the FSoE slaves that are connected switch into the safe state.

#### 4.3.3. Traceability

Traceability means that the time and entity that produced, processed, stored, transported, consumed or disposed of a product or trading good can be traced back at any time

Whereas Berghof Automation GmbH is able to meet this requirement with regard to the production, processing, storage and transport, the purchaser is responsible for all further whereabouts of the product.

The serial number provides the means of uniquely identifying and tracing the product. You can find the serial number printed on the front of the module and also as a sticker on the underside of the module. It can also be read by software. To ensure proper traceability, the purchaser is obliged to note down this number together with the name, place of installation and end customer of the machine.



The purchaser must ensure the traceability of the units by means of this serial number.

### 4.4. Useful Life

B-Nimis SC-1000 Safety-PLC Modules have a design life of max. 20 years from their date of manufacture (see section 5.1 Labelling and Identification). The module must be taken out of use no later than one week before expiry of these 20 years (see section 6.10.3 Decommissioning).



The date of manufacture is printed on the housing as part of the serial number, and in addition is stored in the memory of the Safety PLC (see section 5.1.2 Serial number).

# 4.5. Technical Data

# 4.5.1. General specifications

| Designation                                           | Value                                                                                                                                                                                                                 |  |
|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Device data                                           |                                                                                                                                                                                                                       |  |
| Product name                                          | B-Nimis SC-1000                                                                                                                                                                                                       |  |
| Field bus                                             | EtherCAT 100 Mbit/s                                                                                                                                                                                                   |  |
| E-bus port                                            | 10-pin system plug in side wall                                                                                                                                                                                       |  |
| Memory for CODESYS application and configuration data | A total of 512 kByte are available:  • 400 kByte for the CODESYS application • 112 kByte for the configuration data                                                                                                   |  |
| Electrical insulation                                 | All modules electrically insulated from each another and from the bus                                                                                                                                                 |  |
| Diagnostics                                           | LEDs (see section 5.3 Status LEDs)                                                                                                                                                                                    |  |
| E-bus load                                            | max. 240 mA (system power supply)                                                                                                                                                                                     |  |
| Terminating module                                    | Module bus cover necessary at the last module                                                                                                                                                                         |  |
| System Power Supply                                   |                                                                                                                                                                                                                       |  |
| Supply voltage                                        | 5 V DC via E-bus connection provided by the head module (bus coupler or PLC in compliance with EN 61131-2, power supply 24 V DC, min15% / +20% SELV/PELV)                                                             |  |
| Overvoltage category                                  | Category II to IEC 60664-1, in compliance with EN 61131-2                                                                                                                                                             |  |
| Reverse polarity safeguard                            | yes                                                                                                                                                                                                                   |  |
| Immunity to interference                              | Installation in Zone B to 61000-6-2, in compliance with EN 61131-2, installation on an earthed DIN rail in an earthed control cabinet. Lay the earth according to the operating conditions. (see section 6.2.1 Earth) |  |
| Storage and transport condit                          | ions                                                                                                                                                                                                                  |  |
| Ambient temperature                                   | -25+70 °C                                                                                                                                                                                                             |  |
| Rel. humidity                                         | 595 % non-condensing                                                                                                                                                                                                  |  |
| Atmospheric pressure                                  | 70108 kPa                                                                                                                                                                                                             |  |
| Vibration                                             | 58.4 Hz: ±3.5 mm amplitude, 8.4150 Hz: 10 m/s² (1g), to IEC 60068-2-6, Fc test                                                                                                                                        |  |
| Shock                                                 | 150 m/s² (15g), 11 ms semi-sinusoidal wave to IEC 60068-2-27                                                                                                                                                          |  |

| Operating conditions    |                                           |
|-------------------------|-------------------------------------------|
| Installation position   | horizontal, stackable                     |
| Degree of contamination | Degree of contamination II to IEC 60664-3 |

| Permissible operating environment | Operation is restricted to environments complying with IP54 or at least IEC 60529 (e. g. in a suitable control cabinet) |  |  |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------|--|--|
| Operating temperature             | 0+55 °C                                                                                                                 |  |  |
| Relative humidity                 | 595 % non-condensing                                                                                                    |  |  |
| Atmospheric pressure              | 80108 kPa                                                                                                               |  |  |
| Installation altitude             | Maximum 2000 above mean sea level                                                                                       |  |  |
| Vibration                         | 58.4 Hz: ±3.5 mm amplitude, 8.4150 Hz: 10 m/s² (1g), to IEC 60068-<br>2-6, test Fc                                      |  |  |
| Shock                             | 150 m/s² (15g), 11 ms semi-sinusoidal wave to IEC 60068-2-27                                                            |  |  |
| Mechanical properties             |                                                                                                                         |  |  |
| Mounting                          | 35 mm DIN rail (top-hat rail)                                                                                           |  |  |
| Dimensions (W x H x D)            | 25 mm x 120 mm x 90 mm                                                                                                  |  |  |
| Ingress Protection                | IP20                                                                                                                    |  |  |
| Housing mount                     | Aluminium                                                                                                               |  |  |
| Screen connection                 | connects straight to module housing                                                                                     |  |  |

#### 4.5.2. Size of the FSoE data frame

The FSoE protocol defined a maximum frame size of 1322 bytes. This is the maximum size of the data that can be exchanged between a Safety PLC and an FSoE slave.

The maximum number of FSoE slaves to a Safety PLC is calculated by the addition of the respective safe I/O data plus protocol overheads (these together yield the size of the frame). The size data can be found in the product description of the respective FSoE slave.

Typical values for the size of the FSoE frame of a FSoE slave is dependent on the safe I/O usable data:

| Payload data (bytes) | Size required by the slave in the FSoE frame (bytes) |
|----------------------|------------------------------------------------------|
| 1                    | 6                                                    |
| 2                    | 7                                                    |
| 4                    | 11                                                   |
| 8                    | 19                                                   |
| 16                   | 35                                                   |
| 32                   | 67                                                   |

#### In general:

Size of the FSoE frame =  $2 \times \text{safe I/O}$  data + 3 byte descriptive data (CMD + connection ID) Subject to the minimum size of the frame: 6 bytes



If during the configuration of a safety application the maximum size of the FSoE data frame stated above is exceeded, the respective safety application will not start.

#### 4.5.3. Setting the cycle time for the safety application

The cycle time for the safety application is set in the programming system. It can be set to a value from 4 ms to a maximum of 600 ms in millisecond steps.



Values outside the range cannot be set.

When such a safety application is loaded, the Safety PLC will return an error message.

For new safety projects it is recommended that the safety task time is set to a high value (e.g. 50 ms). When the project is running, the safety task time actually required can be read in the object. (SDO Object 2220 Subindex 4) This value can be accepted with a buffer (e.g. +20%).

### 4.5.4. Response Time

In a safety system consisting of the Safety PLC, safe I/O modules connected via FSoE and associated sensors and actuators, the overall response time is made up of the signal processing times of the individual components (see diagram). For the operating Safety PLC the response time is the task cycle time set in the safety application.

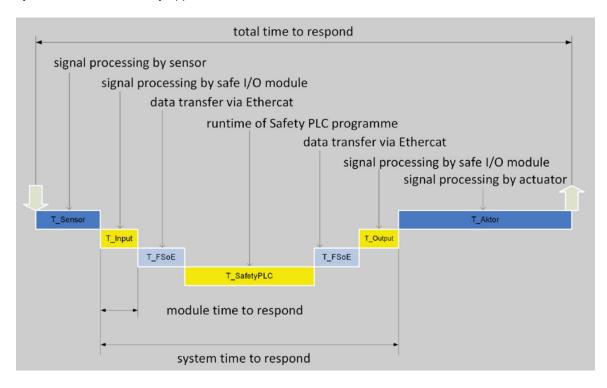



Fig. 7: Response time in multi-module operation (example)

| Definition  | Description                                                                              |  |  |
|-------------|------------------------------------------------------------------------------------------|--|--|
| T_Sensor    | Processing time of the sensor until the signal is available at the interface.            |  |  |
|             | Typically this is declared by the sensor manufacturer.                                   |  |  |
| T_Input     | Processing time of the safe input, e.g. SI4/SO2 module.                                  |  |  |
|             | This time can be found in the technical data of the input module.                        |  |  |
| T_FSoE      | Processing time of the communication. This is max. 3x the EtherCAT cycle time, since     |  |  |
|             | new data are can always be sent only via a new Safety-over-EtherCAT telegram and         |  |  |
|             | the data must then be copied from the supervisory standard PLC. The processing time      |  |  |
|             | of the communication therefore depends directly on the cycle time of the EtherCAT        |  |  |
|             | master.                                                                                  |  |  |
| T_SafetyPLC | Processing time of the Safety PLC. This is the set cycle time of the safety application. |  |  |
|             | If due to excessively high complexity of the program this cannot be achieved, the        |  |  |
|             | Safety PLC will switch into the safe state.                                              |  |  |
| T_Output    | Processing time of the safe output, e.g. SI4/SO2 module.                                 |  |  |
|             | This time can be found in the technical data of the output module.                       |  |  |
| T_Actuator  | Processing time of the actuator. This information is typically provided by the actuator  |  |  |
|             | manufacturer.                                                                            |  |  |

### **A** CAUTION

To calculate the safe response time, take account of the fieldbus runtimes and the Safety PLC's cycle time.

- The field bus runtimes and the Safety PLC cycle time must be taken account of to calculate the safe response time.
- For the runtime of the field bus, a worst case of 3x the EtherCAT cycle time per directional signal must be assumed.



Since a fault may occur during the Safety PLC cycle, the maximum system response time must be assumed for the design response time. This can be set by means of the watchdog time of the FSoE slaves.

### 4.5.5. Size

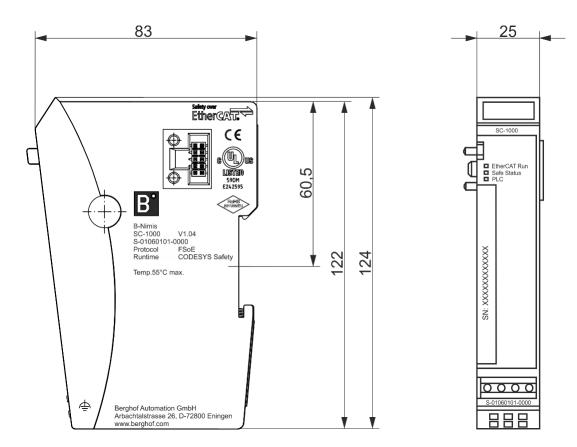



Fig. 8: Dimensions in mm

### 4.6. Transport and Storage

At times of transport and storage, protect the B-Nimis SC-1000 Safety-PLC module against inadmissible exposure to conditions such as mechanical stress, temperature, humidity and/or aggressive atmospheres.

- ► Transport and store the B-Nimis SC-1000 Safety-PLC module in its original packaging.
- When stock picking or unpacking, take care not to contaminate or damage the contacts.
- Comply with the ESD instructions store and transport the B-Nimis SC-1000 Safety-PLC module in suitable containers/packaging.

Some parts of the units are sensitive to ESD and may be damaged if handled inappropriately.

▶ When commissioning and performing maintenance of the B-Nimis SC-1000 Safety-PLC module take the appropriate precautions against electrostatic discharge (ESD).

### A

### CAUTION

#### Electrostatic discharge

Destruction of or damage to the unit.

- Transport and store the B-Nimis SC-1000 Safety-PLC module in its original packaging.
- Ensure that the ambient conditions are as specified at all times during transport and storage.
- ► Handle the B-Nimis SC-1000 Safety-PLC modules in a well-earthed environment (persons, place of work, packaging).
- ▶ Do not touch electrically conductive parts such as data contacts. Some of the electronic components may be destroyed if exposed to electrostatic discharge.

# 5. Construction and Functionality

# **5.1.** Labelling and Identification

### 5.1.1. Imprinted Texts and Symbols

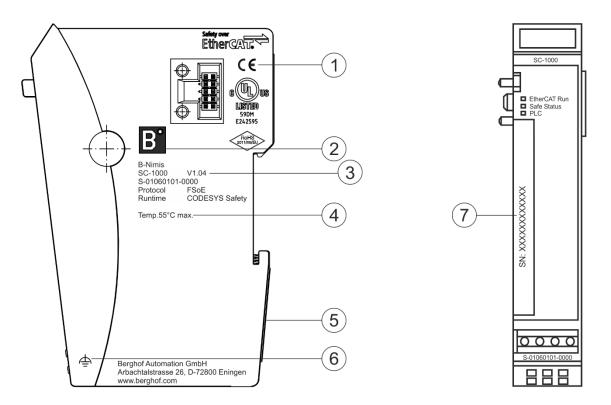



Fig. 9: Imprinted Texts and Symbols

| Item | Designation                              | Item | Designation                    |
|------|------------------------------------------|------|--------------------------------|
| 1    | Operating conditions                     | 5    | Serial number on the underside |
| 2    | Manufacturer's label                     | 6    | Operative earth                |
| 3    | Module Version acc. to Table 1.2.2 (p.8) | 7    | Serial number on front face    |
| 4    | Wiring diagram                           |      |                                |

#### 5.1.2. Serial number

The serial number is printed vertically on the front face. It can also be found on the rear face of the module. The numerical code incorporates the production date and a serial number. The numerical code permits Berghof Automation GmbH to perform unique identification of the model, software and hardware release date.

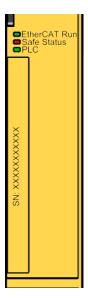



Fig. 10: Front view with serial number

Structure of the serial number:

YY MM DD NNNNN

Y = Year (production date)

M = Month (production date)

D = Day (production date)

N = sequential number



The serial number is also stored in object 1018h sub-index 4 (see section 7.2.7 Identity Object 1018h) and can be read by EtherCAT SDO access.

# 5.2. Scope of delivery

- → B-Nimis SC-1000 Safety-PLC module
- → Module bus cover

### 5.3. Status LEDs



Fig. 11: Status LEDs

#### Displays:

- → "EtherCAT Run" LED Status of the EtherCAT communication
- → LED "Safe Status" (Duo-LED): Status of the module regarding its safety function
- → "PLC" LED: Status of the module

| LED                | State   | Explanation                             |  |
|--------------------|---------|-----------------------------------------|--|
| "EtherCAT Run" LED |         |                                         |  |
| Off                | Init    | Initialising, no data exchange          |  |
| Off/green, 1:1     | Pre-Op  | Pre-operational, no data exchange       |  |
| Off/green, 5:1     | Safe-Op | Safe operation, inputs readable         |  |
| Green continuous   | Ор      | Operational, unrestricted data exchange |  |
| LED "Safe Status"  |         |                                         |  |
| Green continuous   | ОК      | Module is in the functional safe state  |  |
| Red, continuous    | Error   | The module is in the fail-safe state    |  |
| "PLC" LED          |         |                                         |  |
| Off                | _       | Safety application not loaded           |  |
| Off/yellow, 1:1    | _       | Safety application is being loaded      |  |
| Yellow, continuous | _       | Safety application is loaded            |  |
| Green continuous   | _       | Safety application is running           |  |
| Red, continuous    | _       | Safety application is stopped           |  |
| Off/red, 1:1       | _       | Safety application was aborted          |  |
| Off/green, 1:1     | _       | The safety application is in Debug mode |  |

The status LEDs are not a safety-related display. Thus the displays of the status LEDs must not be relied on as a reliable indication of the operating status of the module etc.

## 5.4. Operating Software

The Safety PLC is part of a decentralised CODESYS-based control system. The programming of the Safety PLC is performed using a CODESYS-based programming system extended by the use of a certified plug-in (CODESYS Safety Extension) that provides the safety functionality.

### **A** WARNING

#### Incorrect programming and parameter setting

- ▶ Perform programming and parameter setting only via the CODESYS Safety Extension approved for use in conjunction with the CODESYS Safety runtime system version 1.2.0.
- ▶ Perform programming and parameter setting in accordance with the relevant CODESYS Safety user guide.

# 6. Installation and Operation

- ▶ Before installation, verify that the Safety Module has been transported and stored under the ambient conditions specified in section "4.6 Transport and Storage" and section "4.5 Technical Data".
- Module operation is subject to the service conditions specified in section 4.5 Technical Data.

### **A** CAUTION

#### Incorrect operation

Safety PLC module malfunctions.

- Only persons qualified for dealing with safety matters are allowed to add, replace and put Safety PLC Modules into operation.
- ▶ Before installing, servicing or putting Safety PLC Module into service, please also read the safety information in this document.
- ▶ Before putting the unit into service, verify that all safety functions work as specified (validation of the safety function).

#### 6.1. Mechanical Installation

No tools are required for installation and deinstallation of the Safety PLC. See sec. 6.1.3 to sec. 6.1.6

#### Instructions for the installation environment

The device must be protected against impermissible contamination (degree of contamination II of IEC 60664-3 must be complied with).

A housing to index of protection IP54, such as a suitable control cabinet will afford the necessary protection. Operation under conditions of condensing humidity is not permitted.

## **WARNING**

#### Potentially hazardous failures due to contamination

Contaminations more severe than those described for degree of contamination II of IEC 60664-3 may cause potentially hazardous failures.

Do ensure that the operating environment complies with at least IP 54, e. g. by installing the unit in a suitable control cabinet.

#### 6.1.1. Installation position

The device is intended for installation on a rail (to DIN EN 50022, 35 x 7.5 mm). Mount the device on a horizontal rail with the status LEDs of the module facing forwards.

To ensure that enough air enters through the ventilation slots on the module, leave at least 20 mm to the top and 35 mm to the bottom of the module and any adjacent devices or cabinet surfaces. Leave at least 20 mm of lateral distance to third-party units and cabinet surfaces.

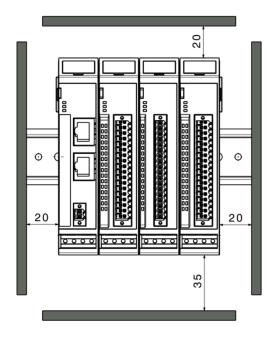



Fig. 12: Installation position and minimum clearances in mm

#### 6.1.2. E-bus Plug Connector and Module Lock

The system plug connectors and the module lock are located on the sides of the B-Nimis SC-1000 Safety-PLC module. These plug connectors interconnect the modules. They supply power to the module electronic circuitry and transfer the EtherCAT signals. The module bus connector together with an end cap to protect the terminal unit against dirt is attached to the last module at the right-hand side. The integrated module lock prevents the modules from coming apart under mechanical load or vibration.

#### 6.1.3. Snapping on a Single Module

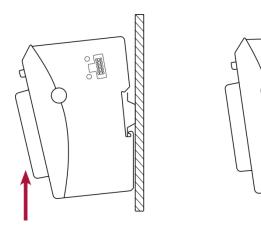



Fig. 13: Installing a module

- 1st Push the module up against the mounting rail from below, allowing the metal spring to snap in between mounting rail and mounting area as illustrated.
- 2nd Push the module upwards against the mounting wall until it snaps in.

#### 6.1.4. Interconnecting two modules

- 1st After snapping on the first module to the rail, snap on the second module to the right of the first module at a distance of about 1 cm.
- 2nd Push the second module leftwards along the rail towards the first module until you hear the locking device snap in.
- 3rd To prevent inadmissible contamination, fit the cover of the module bus connector on to the rightmost module of the B-Nimis I/O system.

# **A** CAUTION

#### Risk of injury due to short circuit fault of module bus contacts

A short circuit of the module bus contacts may cause the communication with the safe module to fail.

Make sure that the bus end cap is attached to the last modules of a row of modules.

#### 6.1.5. Disconnecting two modules

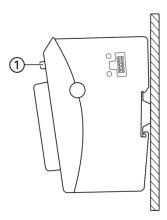
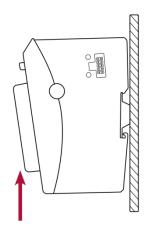
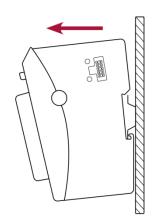





Fig. 14: Disconnecting modules

- 1st Press the locking device (1) of the module to be disconnected.
- 2nd Push the two modules away from one another until they are about 1 cm apart.

### 6.1.6. Removing a single module





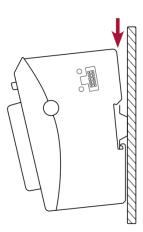



Fig. 15: Removing a module

- 1st Push the module upwards against the metal spring located on the underside of the rail guide.
- 2nd Tip the module forwards away from the rail as shown in the illustration.
- 3rd Pull the module downwards and off the mounting rail.

#### 6.2. Electrical Installation

#### 6.2.1. Earth

The modules must be earthed, for which purpose the inner metal housing must be connected to an effective earth conductor. Since the effective earth dissipates HF currents and is of the utmost importance for the interference immunity of the module.

HF interference is dissipated from the electronics board to the metal housing. The metal housing therefore needs to be suitably connected to an effective earth.

Normally, earthing of the module housing is provided by a good connection achieved by clicking on to the DIN rail. This is turn has a good earth connection to the control cabinet, which is itself well earthed. If necessary the earth can be connected directly to the front of the module (see illustration, item 1).



Fig. 16: Earthing (for example an I/O module)

| Item | Designation                         | Item | Designation                              |
|------|-------------------------------------|------|------------------------------------------|
| 1    | Earth/cable screen attached using a | 2    | DIN rail connected to an effective earth |
|      | M3x5 screw                          |      |                                          |

- Earth conductors should be short and have a large area (copper mesh).
- When installing systems, measure the earthing of the DIN rail as specified in the applicable guidelines (earth test to VDE 0100). Measuring the earthing must show that every protective earthing and operational earthing are within the limits set by the applicable standards.
  - ▶ Perform repeat testing at intervals determined by the risk assessment.

#### 6.2.2. Interconnection between modules

The modules make electrical connections by being completely pushed together. This automatically connects the modules to both the EtherCAT bus and the system power supply. Refer to section 6.1 Mechanical Installation for details about how to interconnect two modules.

#### 6.2.3. System Power Supply to the row of modules



Only modules may be used for the power supply to the Safety PLC (bus coupler, microcontrollers in compliance with EN 61131-2), which provide a reverse polarity safeguard for the 24V power supply.

The logical power supply to the individual modules is provided by the head module (microcontroller or bus coupler) via the backplane bus of the modules. The number of modules in a row is dependent on the output power of the head module. A typical output power of 3 A is sufficient to supply approx. 20 connected modules. To connect a larger number of modules these must be arranged in multiple blocks, each block with its own bus coupler.



- ▶ Please comply with the system power supply details provided in the operating instructions of the upstream bus couplers or compact PLCs as well as the additional system power supply instruction in this user manual.
- Please note that the maximum current supplied by the bus coupler limits the number of modules you may connect to a single block.



Depending on the number of modules in the row, the voltage conditions on the E-bus vary according to the module position.

Place the B-Nimis SC-1000 Safety-PLC module as close as possible to the head module, in order to ensure the highest possible availability.

# A

#### **WARNING**

#### Damage due to power supply with the wrong voltage

Supplying the wrong voltages may damage or destroy the unit.

Preventive measures:

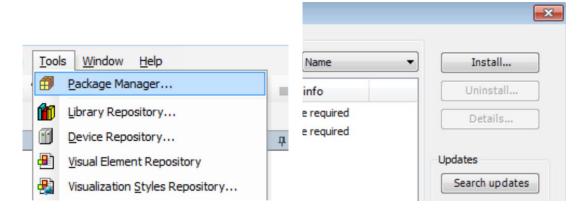
- ▶ Only use PELV/SELV-ready power supply units to EN50178 or EN60950-1 to supply 24 V DC to bus couplers or compact PLCs to which any Safety PLC modules are connected.
- ▶ Only use the GND terminal to connect the power supply unit to earth (PELV system). Do not use earthing variants that connect earth to +24 V.
- ► To ensure that there is as little interference as possible, install a central power supply point and establish a star topology of as short wires as possible between the central point and the B-Nimis I/O module block.

# 6.3. Initial commissioning

i

The B-Nimis SC-1000 Safety-PLC module may be operated only with FSoE-compliant FSoE slaves. After any work has been performed on the safety system, the safety functions must be checked for correct operation.

#### 6.3.1. Configuration


The Safety PLC is configured solely by means of the operating software. There are no configuration facilities on the module itself.

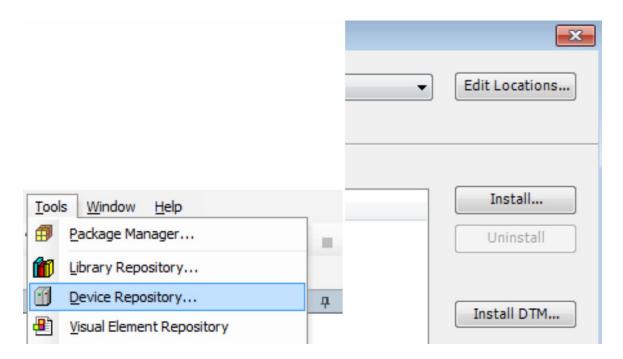
### 6.4. Installing the Software

#### 6.4.1. Installing the Safety Extension

The Safety Extension required for the Safety PLC must be integrated manually into the programming system. After the CODESYS installation has been performed, double clicking on the CODESYS Safety Extension will install it in the installation file.

Alternatively the extension can be installed in the CODESYS itself under the "Tools -> Package Manager... -> Install..." tab.




Important: In both cases the installation of the extension must be performed by a user with administrative rights.

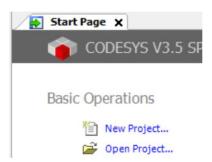
▶ On completion of the installation, restart the CODESYS programming system.

#### 6.4.2. Installing the Safety Device Description

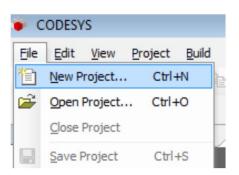
It is a condition of use of EtherCAT modules that the associated device description is installed. This applies also to safety modules (Safety PLC and associated I/O modules).

Device descriptions (\*.xml) can be installed in CODESYS under the "Tools -> Device Repository" tab.

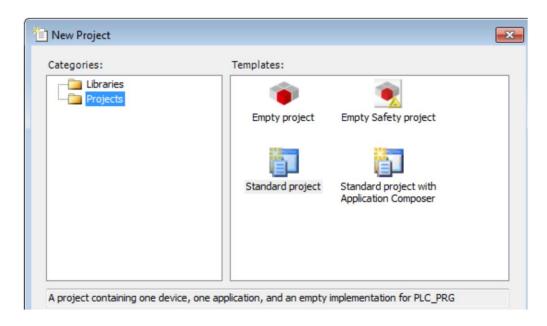



The device description for the Safety PLC and descriptions for all other devices must be installed in the device repository before they can be used in the project.

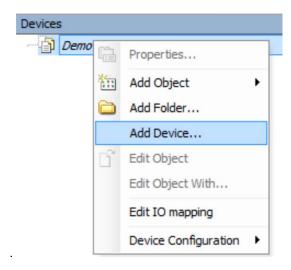



The installation of CODESYS Package files and device descriptions should always be performed by a user with administrative rights.

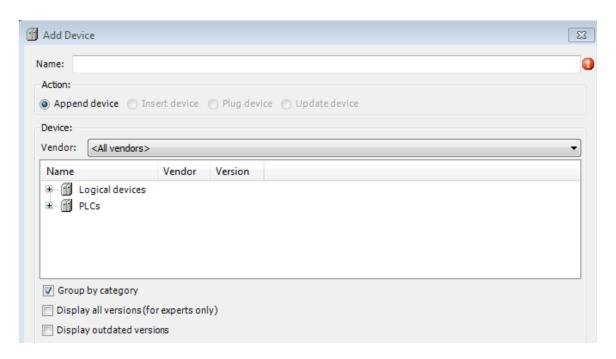
#### 6.4.3. Creating a safety project


- 1st Open CODESYS V3.
- 2nd On the Standard CODESYS home page, under "Basic operations" click on "New project...".




Alternatively you can create a new project under "File -> New project...".

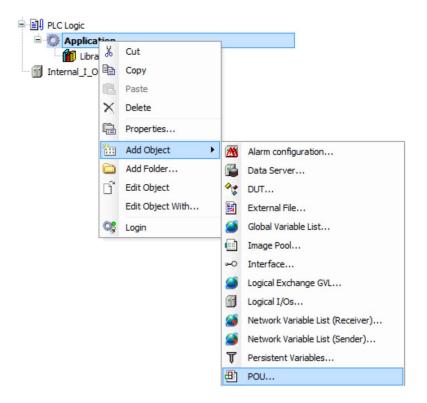



- 3rd Select the template "Empty safety project".
- 4th Select "Name" and the memory location of the project, and press "OK" to create the project.

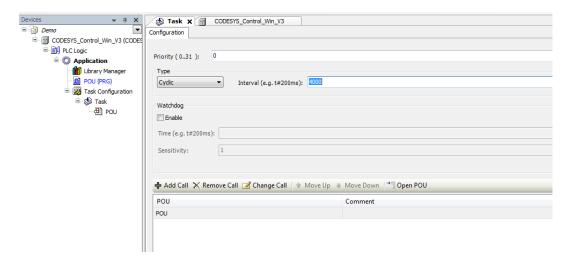


5th For an empty project, attach a standard PLC by right clicking on "[project name] -> Attach device".



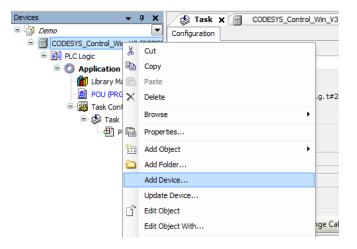

6th Select the device type of the desired standard PLC.




7th In order to insert objects into the application, right click on "Application -> Add Object" to execute it.



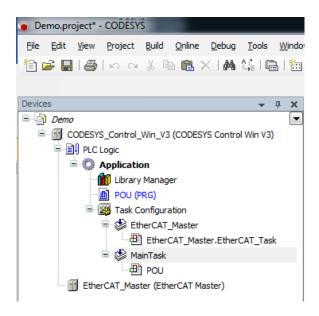
A list opens, in which all objects available to be added are shown. Clicking on the respective object adds it to the application.



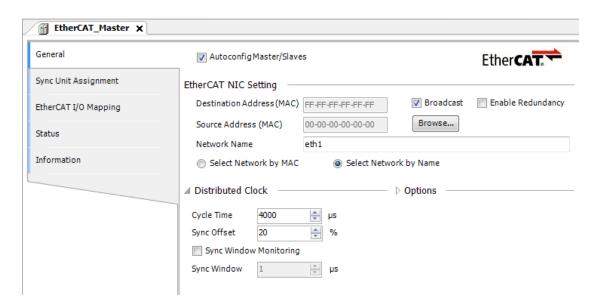

- 8th Inserting a POU (program).
- 9th Inserting a task configuration.
- 10th Use the task configuration to call up POU: Click on "Add call up" and select POU in the list.



Since the Safety PLC is an EtherCAT-based module, an EtherCAT master must also be attached:


- 11th Right click on the standard PLC already selected.
- 12th Select "Attach device..." in the selection window.



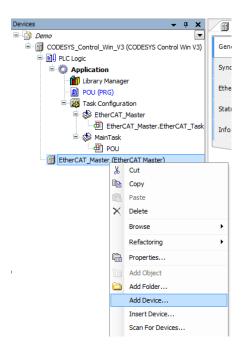

- 13th In the next window select "Field buses -> EtherCAT -> Master -> EtherCAT Master".
- 14th Click on "Attach device" to insert the EtherCAT master into the project.

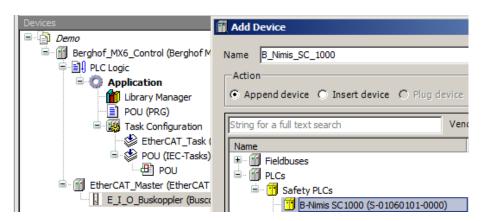


The EtherCAT master is now listed in the device window and has been successfully incorporated into the project. The associated task configuration for the EtherCAT master is also created automatically.



15th In the settings for the EtherCAT master, select or declare the associated Ethernet interface. (EtherCAT NIC settings → Select the network by name, network name)

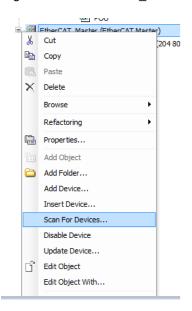




16th Inserting EtherCAT devices manually or by EtherCAT search.

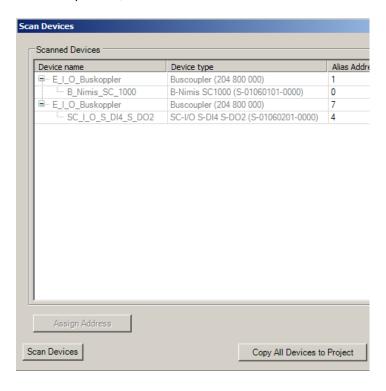
#### Installing EtherCAT devices manually

The bus coupler, Safety PLC, safety modules and other EtherCAT modules can now be inserted from the point of view of the standard PLC:

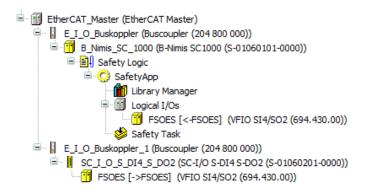
1st Right click on "EtherCAT\_Master -> Attach device...".
2nd Select devices.







#### Insert devices by EtherCAT search

As an alternative to manual insertion, there is also an easy way to link modules into the project. Available EtherCAT devices can be sought automatically and inserted into the project. For this purpose an executable and compilable application must exist with the EtherCAT master on the standard PLC. In addition all desired additional modules must be connected.


- 1st Right click on "Application-> Login" to login to the standard PLC.
- 2nd Load the application to the PLC.
- 3rd Right click on "EtherCAT\_Master -> Search for devices..." to open a new window for the search.

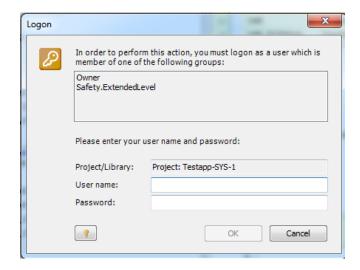


After the search process, all devices found within the EtherCAT network are listed.



4th Click on "Copy all devices into project" to automatically add all devices found under the EtherCAT master.



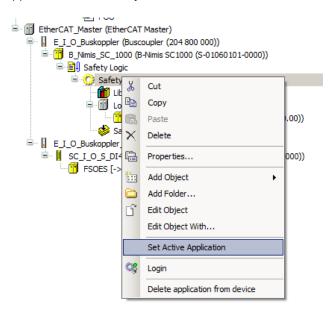

The safety application is located in the EtherCAT module of the Safety PLC. This is used within the programming system as a "normal" standard PLC (set active application, login, logout).



For creation of the safety application see the CODESYS Safety Manual.

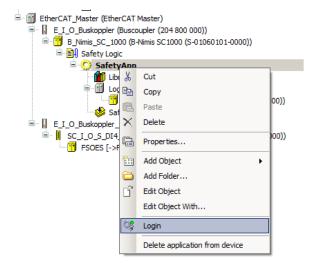
When an empty safety project is created, a user management is always incorporated automatically. By default this is the user as the "Owner", with a blank password.

When changes are made to a safety application the user must be authenticated so that the change can be made.




Safety devices and safety applications should generally be password-protected against unauthorised access

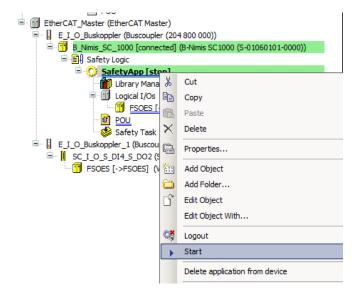
#### 6.4.4. Safety PLC - logging in and downloading an application


In order to create a connection to the Safety PLC, an EtherCAT master with the correct EtherCAT configuration must be present and started on the standard PLC, so that the EtherCAT master is running.

1st In the logged in state, right click on "Safety App"-> "Active application" to switch the active application to the Safety PLC.



2nd Right click on "Safety App"->"Login" to log in to the Safety PLC.

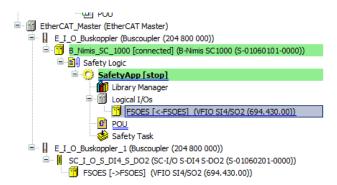

3rd Load the application to the PLC.



At logging in, a security question requests the serial number of the Safety PLC. The ensures that a Safety PLC and the application on it will not be changed inadvertently.



4th Right click on "Safety App" -> Start to start the application.




#### 6.4.5. Safety PLC – FSoE (Safety over EtherCAT)

The Safety PLC communicated via FSoE (Safety over EtherCAT) with other safety modules. For this purpose the Safety PLC is the FSoE master and the safety modules are FSoE slaves. The FSoE slaves are addressed by the master via a unique ID. This FSoE slave ID must be unique within the EtherCAT network and configured both in the master and also in the slave module. (Refer to the User Guide for the respective module for the procedure for setting the FSoE ID in the slave module)

#### 6.4.6. Configuration of the FSoE slave ID in the Safety PLC

The FSoE (Safety over EtherCAT) slave modules are configured in the Safety PLC using CODESYS Safety.



The FSoE configuration of the slave modules is performed in the Safety PLC under the "Safety App" in the logical I/Os entry. Here the slave modules are inserted automatically and can be modified manually.

The configuration of the respective FSoE slave must be saved in the configuration window. Each module must here be assigned a unique FSoE address and a unique connection ID.



# 6.5. Validation of the safety function

On completion of the installation and commissioning the safety application, this must be validated for correct operation within the overall system.



#### **DANGER**

#### Validation of the safety function

Safety applications must be validated for implementation and function within the overall system.

▶ Perform and document validation of the overall system as specified in the CODESYS Safety User Guide

# 6.6. Diagnostics

#### 6.6.1. Selftest

When system voltage is applied to the Safety PLC, initially the module runs a complete system test. Only once the module has passed the self-test can the module be used. Only once this is done does the Safety PLC switch into the "Fail-Safe" safe state.

This is indicated by the "Safe Status" LED lighting up red.

The Safety PLC will remain in the fail-safe state until all internal tests have been passed.

Once the Safety PLC has passed the self-test the safety application saved on it is started.

This is the safe functional state is indicated by LED "Safe Status" lighting up green.

If the state is not achieved, for instance if it was not configured correctly in the application – the module still remains in the fail-safe state.

In service, the system test is repeated cyclically as a background process; any faults found the self-test also trigger the Fail-Safe state. This is recorded in the CODESYS log.

#### 6.6.2. Faults within the Safety PLC module

Faults within the Safety PLC module will be discovered in good time by the cyclic system test in accordance with the requirements of the standards specified in the certificate, and will result in a switch to the Fail-Safe state.

The Fail-Safe state is indicated by the LED "Safe Status" lighting up red (see section 5.3 Status LEDs).



The status LEDs are not safety-related displays. Thus the displays of the status LEDs must not be relied on as a reliable indication of the operating status of the module etc.

# **A** DANGER

#### Use of devices in a fail-safe state

The following faults may provoke a hazard.

On your own responsibility, ensure that after a fault occurs, all necessary measures are taken for clarification and rectification of the cause of the fault, and components are replaced as necessary.



In case of serious internal faults within the module of the Safety PLC, Berghof Automation GmbH must be informed.

#### 6.6.3. Temperature Faults

The module is designed for ambient temperatures between 0 °C and max. 55 °C and to be installed in a control cabinet. The Safety PLC incorporates its own internal temperature sensor. If during operation the temperature strays outside the specified range, the Fail-Safe state will be adopted. If the ambient temperature is outside the specified temperature range, the module cannot be brought into operation.



#### CAUTION

It is prohibited to operate the B-Nimis SC-1000 Safety-PLC module outside the specified range Faults due to undertemperature / overtemperature.

▶ The module may be operated only under the ambient conditions listed in the Technical Data.



#### CAUTION

It is impermissible to use the internal temperature sensors for safety applications!

Temperature sensor not available for safety-related applications.

▶ The internal temperature sensor may not be used for implementation of safety applications.

#### 6.6.4. Error Handling and Logging

Depending on their type, faults detected are indicated by the diagnostic LEDs of the Safety PLC. In addition all error messages are displayed in the log-window of the respective Safety PLC in the programming system. Furthermore, the errors can be read by the standard PLC from special tabs of the Safety PLC by using COE objects (see the index of objects).

# Resetting/acknowledging an error

The Safety PLC makes a distinction between errors in the Safety PLC and those in the communication with sensors and actuators and faults of the sensors and actuators.

Errors in the Safety PLC can be acknowledged only by restarting the system. This is achieved by performing a power cycle (switching the power off and on again) at the head module.

Loss of communications or faults in sensors and actuators lead to errors in the associated safety module. They are detected in the safety application and acknowledged by rest procedures at the modules (such as the FSoE master). In this case the Safety PLC remains in the functional safe state.

#### **Power Cycle**

After the cause of the fault has been rectified the Safety PLC can be reset by performing a power cycle (switching the power off and on again) at the head module.

#### **WARNING**

#### Resetting / acknowledging may cause a dangerous state

- Before acknowledging an error, verify that its cause has been removed professionally.
- Before acknowledging an error, verify that acknowledging it will not cause a dangerous machine state.
- At the machine or system planning stage, make sure that acknowledging an error must not be possible unless you have full view of the danger zone.

# 6.8. Maintenance / Servicing

#### 6.8.1. General

Only qualified persons are allowed to work on the Safety PLC.



#### CAUTION

#### Unsafe and undefined machine state

Destruction or malfunction of the Safety PLC.

- ▶ The module housing may not be opened.
- ► The module may not be repaired.
- ▶ Do not plug, mount, unplug or touch the connectors during operation!
- Switch off all power sources before working on the modules. This also applies to any peripherals such as encoders or programming devices with external power sources, etc.
- ▶ Check that none of the ventilation slots is covered.

#### 6.8.2. Servicing

The Safety PLC Module is maintenance-free for the specified service life, and requires no servicing. For this reason there are also no spare parts available.

Whilst in operation and storage the Safety PLC must be protected against contamination, apart from the degree of contamination usually expected in the defined ambient conditions of use. If the module if it has been exposed to inadmissible contamination, do not attempt to use it, clean it or continue to use it.



#### **DANGER**

#### Risk of injury due to safe and undefined machine state

- ▶ Operation of an impermissible contaminated module is prohibited.
- Cleaning the unit is prohibited.

### 6.9. Replacement of a Safety PLC

#### CAUTION

#### Risk of injury due to safe and undefined machine state

Risk of injury.

- Switch off the power supply to the Safety PLC and the connected modules before replacing a Safety
- Once a Safety PLC module has been replaced, separately test the safety function before restarting the machine or system.

#### 6.9.1. Replacement

#### **Preparation**

- Ensure that the new module satisfies the following conditions:
  - Same type of device
  - $\rightarrow$ The same or higher version, see section 5.1 Labelling and Identification.
- Bring the system or machine into a safe state. 2nd
- Switch off the power supply to the head module and the connected modules.

#### Remove the old module

- If necessary, separate the row of B-Nimis I/O modules: Press the locking device of the adjoining module and push the two modules away from one another until they are about 1 cm apart (see the user guide for the other module).
- 5th Push the module upwards against the metal spring located on the underside of the rail guide. (see section 6.1.6 Removing a single module).
- Tip the module forwards away from the rail. 6th
- Pull the module downwards and off the mounting rail. 7th

#### Installing and programming the new module

- Install the substitute module at the same place as the one that was removed (see section 6.1.3 Snapping on a Single Module).
- 9th Load the validated safety application.

#### 6.9.2. Recommissioning

- 1st Ensure that the machine or system is in a safe state and that there is nothing and nobody in the danger zone.
- 2nd Switch the supply voltage on again.
- After the replacement safety module has been plugged in, proceed as for initial commissioning (see section 6.3 Initial commissioning).
- After replacing a module, perform a check of all safety functions. 4th

# 6.10. Working Life

Safety PLC modules have a design life of max. 20 years from their date of manufacture (see section 5.1 Labelling and Identification).



#### WARNING

#### Risk of injury if modules are used beyond their useful life!

► Take the module out of use no later than expiry of its useful life (see section 6.10.3 Decommissioning).

#### 6.10.1. Repairs / Customer Service

It is prohibited to open or try to repair a B-Nimis SC-1000 Safety-PLC module. In such an event the function of the Safety PLC module can no longer be guaranteed.



If a module failure is potentially hazardous, return the module to the manufacturer where the fault will be identified.

For the manufacturer's address see section 8 Customer Service / Addresses.

#### 6.10.2. Warranty

The statutory warranty is applicable. It lapses if the device/product is subjected to unauthorised attempts at repairs or other interventions.

#### 6.10.3. Decommissioning

The manufacturer of the machine or system specifies the procedure for decommissioning the product.

- During decommissioning, ensure that the used modules are handled for further use as the the intended purpose.
- Comply with the transport and storage requirements specified in the Technical Data.

### 6.10.4. Disposal

- Dispose of the safety system in conformity with the applicable environmental regulations and make sure that it is not returned into circulation.
- ▶ Treat the packaging as recyclable paper and cardboard.

# 7. Appendix

# 7.1. Safety-related Output Ratings of the Safety PLC

The following table contains the safety-related output ratings of the Safety PLC. All components involved in the safety function must be taken into account in order to assess whether the desired safety level is achieved.

| Designation                                                                                         | Value                                                                                                  |                                                                                                         |  |
|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--|
| Maximum safety integrity level to EN 62061:2010                                                     | SIL3                                                                                                   |                                                                                                         |  |
| Maximum safety integrity level to IEC 61508:2010                                                    | SIL3                                                                                                   |                                                                                                         |  |
| Maximum performance level to EN ISO 13849-1:2015                                                    | Cat. 4/PL e                                                                                            |                                                                                                         |  |
| Hardware fault tolerance HFT (IEC 61508:2010/<br>EN ISO 13849-1:2015)                               | 1 (a fault of the application need fail)                                                               | I not cause the safeguard to                                                                            |  |
|                                                                                                     | Ambient temperature 25 °C                                                                              | Ambient temperature 55 °C                                                                               |  |
| Probability of failure on demand PFD <sub>avg</sub> proof test interval: 20 years, (IEC 61508:2010) | 2.57 * 10 <sup>-5</sup><br>(2.57 % of the total PFD <sub>avg</sub><br>of 10 <sup>-3</sup> at SIL3)     | 2.99 * 10 <sup>-5</sup><br>(2.99 % of the total PFD <sub>avg</sub><br>of 10 <sup>-3</sup> at SIL3)      |  |
| Probability of failure on demand PFH <sub>d</sub> , proof test interval: 20 years, (IEC 61508:2010) | 3.04 * 10 <sup>-10</sup> 1/h<br>(0.3 % of the total PFD <sub>avg</sub> of<br>10 <sup>-7</sup> at SIL3) | 3.55 * 10 <sup>-10</sup> 1/h<br>(0.36 % of the total PFD <sub>avg</sub><br>of 10 <sup>-7</sup> at SIL3) |  |
| DC (diagnostic coverage) to EN ISO 13849-1:2015                                                     | 97.24 %<br>(rounded up to 99%<br>in accordance with EN ISO<br>13849-1:2015)                            | 96.9 %<br>(rounded up to 99%<br>in accordance with EN ISO<br>13849-1:2015)                              |  |
| Safe failure fraction (SFF)                                                                         | 98.6 %                                                                                                 | 98.49 %                                                                                                 |  |
| MTTF <sub>D</sub> to EN ISO 13849-1:2015                                                            | 225 years                                                                                              | 221 years                                                                                               |  |

# 7.2. Communications objects

# 7.2.1. Device Type 1000 h

| Designation     | Value             |
|-----------------|-------------------|
| Name            | Device Type       |
| Index           | 1000 <sub>h</sub> |
| Object Code     | VARIABLE          |
| No. of Elements | 0                 |
| Data Type       | UNSIGNED32        |
| Access          | Read only         |
| PDO Mapping     | no                |
| Value Range     | Set               |
| Default Value   | 89130000h         |

# 7.2.2. Error Register 1001<sub>h</sub>

| Designation     | Value             |
|-----------------|-------------------|
| Name            | Error Register    |
| Index           | 1001 <sub>h</sub> |
| Object Code     | VARIABLE          |
| No. of Elements | 0                 |
| Data Type       | UNSIGNED8         |
| Access          | Read only         |
| PDO Mapping     | No, TX-PDO        |
| Default Value   | 00h               |

#### Bit evaluation to CANopen DS301:

| Bit7 | Bit6 | Bit5 | Bit4 | Bit3        | Bit2         | Bit1 | Bit0         |
|------|------|------|------|-------------|--------------|------|--------------|
| 0x80 | 0x40 | 0x20 | 0x10 | 0x08        | 0x04         | 0x02 | 0x01         |
| n.u. | n.u. | n.u. | n.u. | Temperature | Wrong supply | n.u. | Other faults |
|      |      |      |      | faults      | voltage      |      |              |

#### 7.2.3. Device Name 1008h

| Designation     | Value             |
|-----------------|-------------------|
| Name            | Device Name       |
| Index           | 1008 <sub>h</sub> |
| Object Code     | VARIABLE          |
| No. of Elements | 0                 |
| Data Type       | VISIBLE_STRING    |
| Access          | Read only         |
| PDO Mapping     | No                |
| Value Range     | Fix               |

Sub-index 0 of this object contains the string length. Sub-index 1 contains each of the characters. The character string has no terminating zero.

#### 7.2.4. Hardware Version 1009h

| Designation     | Value                         |
|-----------------|-------------------------------|
| Name            | Manufacturer Hardware Version |
| Index           | 1009 <sub>h</sub>             |
| Object Code     | VARIABLE                      |
| No. of Elements | 0                             |
| Data Type       | VISIBLE_STRING                |
| Access          | Read only                     |
| PDO Mapping     | No                            |
| Value Range     | Fix                           |
| Default Value   | 12E3030 h (1.00)              |

### 7.2.5. Software Version 100A<sub>h</sub>

| Designation     | Value             |
|-----------------|-------------------|
| Name            | Software Version  |
| Index           | 100A <sub>h</sub> |
| Object Code     | VARIABLE          |
| No. of Elements | 0                 |
| Data Type       | VISIBLE_STRING    |
| Access          | Read only         |
| PDO Mapping     | No                |
| Value Range     | Fix               |
| Default Value   | 1.2.0             |

# 7.2.6. CANopen 'Restore default parameters obj. 1011h

| Designation     | Value                                     |
|-----------------|-------------------------------------------|
| Name            | CANopen ,Restore default parameters' obj. |
| Index           | 1011 <sub>h</sub>                         |
| Object Code     | RECORD                                    |
| No. of Elements | 5                                         |

| Designation   | Value             |
|---------------|-------------------|
| Name          | Number of entries |
| Subindex      | 00 <sub>h</sub>   |
| Data type     | UNSIGNED8         |
| Access        | Read only         |
| PDO Mapping   | No                |
| Default Value | No default        |

| Designation | Value                             |
|-------------|-----------------------------------|
| Name        | Restore all parameters (not used) |
| Subindex    | 01 <sub>h</sub>                   |
| Data type   | UNSIGNED32                        |
| PDO Mapping | No                                |

| Designation | Value                                       |
|-------------|---------------------------------------------|
| Name        | Restore communication parameters (not used) |
| Subindex    | 02 <sub>h</sub>                             |
| Data type   | UNSIGNED32                                  |
| PDO Mapping | No                                          |

| Designation | Value                                     |
|-------------|-------------------------------------------|
| Name        | Restore application parameters (not used) |
| Subindex    | 03 <sub>h</sub>                           |
| Data type   | UNSIGNED32                                |
| PDO Mapping | No                                        |

| Designation | Value                                                                                                                                       |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Name        | Restore file system (write 0x64616F6C; comes into effect on next power cycle; request will be cleared after 1 min if no power cycle occurs) |
| Subindex    | 04h                                                                                                                                         |
| Data type   | UNSIGNED32                                                                                                                                  |
| Access      | Read write                                                                                                                                  |
| PDO Mapping | No                                                                                                                                          |

| Designation | Value                                                                                                                                                 |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Name        | Delete Boot Application<br>(write 0x64616F6C; comes into effect on next power cycle; request<br>will be cleared after 1 min if no power cycle occurs) |
| Subindex    | 05h                                                                                                                                                   |
| Data type   | UNSIGNED32                                                                                                                                            |
| Access      | Read write                                                                                                                                            |
| PDO Mapping | No                                                                                                                                                    |

# 7.2.7. Identity Object 1018<sub>h</sub>

| Designation     | Value             |
|-----------------|-------------------|
| Name            | Identity object   |
| Index           | 1018 <sub>h</sub> |
| Object Code     | RECORD            |
| No. of Elements | 4                 |
| Data Type       | IDENTITY          |

| Designation   | Value             |
|---------------|-------------------|
| Name          | Number of entries |
| Subindex      | 00 <sub>h</sub>   |
| Data type     | UNSIGNED8         |
| Access        | Read only         |
| PDO Mapping   | No                |
| Default Value | 4                 |

| Designation | Value           |
|-------------|-----------------|
| Name        | Vendor-ID       |
| Subindex    | 01 <sub>h</sub> |
| Data type   | UNSIGNED32      |
| Access      | Read only       |
| PDO Mapping | No              |

| Designation | Value           |
|-------------|-----------------|
| Name        | Product Code    |
| Subindex    | 02 <sub>h</sub> |
| Data type   | UNSIGNED32      |
| Access      | Read only       |
| PDO Mapping | No              |

| Designation | Value           |
|-------------|-----------------|
| Name        | Revision        |
| Subindex    | 03 <sub>h</sub> |
| Data type   | UNSIGNED32      |
| Access      | Read only       |
| PDO Mapping | No              |

| Designation | Value                                                                                 |
|-------------|---------------------------------------------------------------------------------------|
| Name        | Serial number                                                                         |
| Subindex    | 04h                                                                                   |
| Data type   | UNSIGNED32                                                                            |
| Access      | Read only                                                                             |
| PDO Mapping | No                                                                                    |
| Units       | yyyyyy mmmm ddddd nnnnnnnnnnnnnnn 6-bit 4-bit 5-bit 17-bit Year 2014 is coded as '0'. |
| Value Range | 14 01 01 00001 (0x00420001)<br>77 12 31 99999 (0xFF3F869F)                            |
| Example     | 16052300001 ⇔ 0x096E0001                                                              |

The object contains details of the manufacturer, the product code and the revision and serial number.

# 7.2.8. Error Settings (not used) 10F1h

| Designation     | Value                     |
|-----------------|---------------------------|
| Name            | Error Settings (not used) |
| Index           | 10F1 <sub>h</sub>         |
| No. of Elements | 0                         |
| Access          | Read only                 |
| PDO Mapping     | No, TX-PDO                |

# 7.2.9. Sync Manager Type (not used) 1C00h

| Designation     | Value                        |
|-----------------|------------------------------|
| Name            | Sync Manager Type (not used) |
| Index           | 1C00 <sub>h</sub>            |
| No. of Elements | 0                            |
| Data Type       | UNSIGNED8                    |
| Access          | Read only                    |
| PDO Mapping     | No                           |

# 7.2.10. SM out par (not used) $1C32_h$

| Designation     | Value                 |
|-----------------|-----------------------|
| Name            | SM out par (not used) |
| Index           | 1C32 <sub>h</sub>     |
| No. of Elements | 0                     |
| Data Type       | UNSIGNED8             |
| Access          | Read only             |
| PDO Mapping     | No                    |

# 7.2.11. SM in par (not used) 1C33 $_{\mbox{\scriptsize h}}$

| Designation     | Value                |
|-----------------|----------------------|
| Name            | SM in par (not used) |
| Index           | 1C33 <sub>h</sub>    |
| No. of Elements | 0                    |
| Data Type       | UNSIGNED8            |
| Access          | Read only            |
| PDO Mapping     | No                   |

# 7.3. Manufacturer-specific objects

# 7.3.1. MC 1: Reference Voltage [mV] 2000h

| Designation     | Value                        |
|-----------------|------------------------------|
| Name            | MC 1: Reference Voltage [mV] |
| Index           | 2000 <sub>h</sub>            |
| Object Code     | VARIABLE                     |
| No. of Elements | 0                            |
| Data Type       | UNSIGNED16                   |
| Access          | Read only                    |
| PDO Mapping     | No                           |
| Units           | mV                           |
| Value Range     | 0 65535                      |
| Default Value   | No default value             |

# 7.3.2. MC 1: 5 V Supply Voltage [mV] $2002_h$

| Designation     | Value                         |
|-----------------|-------------------------------|
| Name            | MC 1: 5 V Supply Voltage [mV] |
| Index           | 2002 <sub>h</sub>             |
| Object Code     | VARIABLE                      |
| No. of Elements | 0                             |
| Data Type       | UNSIGNED16                    |
| Access          | Read only                     |
| PDO Mapping     | No                            |
| Units           | mV                            |
| Value Range     | 0 65535                       |
| Default Value   | No default value              |

# 7.3.3. MC 1: 3.3 V Supply Voltage [mV] 2003h

This is the supply voltage to MC 2 as measured by MC 1.

| Designation     | Value                           |
|-----------------|---------------------------------|
| Name            | MC 1: 3,3 V Supply Voltage [mV] |
| Index           | 2003 <sub>h</sub>               |
| Object Code     | VARIABLE                        |
| No. of Elements | 0                               |
| Data Type       | UNSIGNED16                      |
| Access          | Read only                       |
| PDO Mapping     | No                              |
| Units           | mV                              |
| Value Range     | 0 65535                         |
| Default Value   | No default value                |

# 7.3.4. Temperature sensor [0.01°C] 2006h

| Designation     | Value                       |
|-----------------|-----------------------------|
| Name            | Temperature sensor [0,01°C] |
| Index           | 2006h                       |
| Object Code     | VARIABLE                    |
| No. of Elements | 0                           |
| Data Type       | UNSIGNED16                  |
| Access          | Read                        |
| PDO Mapping     | No                          |
| Units           | 0,01 °C                     |
| Value Range     | 0 8000                      |
| Default Value   | No default Value            |

### 7.3.5. MC 1: Error code 2007h

| Designation     | Value             |
|-----------------|-------------------|
| Name            | MC 1: Error code  |
| Index           | 2007 <sub>h</sub> |
| Object Code     | VARIABLE          |
| No. of Elements | 0                 |
| Data Type       | UNSIGNED32        |
| Access          | Read              |
| PDO Mapping     | No                |

The table below explains the entries in object 2007<sub>h</sub> "error code".

| ld  | Hex    | Explanation                                                                                   |
|-----|--------|-----------------------------------------------------------------------------------------------|
| 0   | 0x0000 | OK: No error<br>No error                                                                      |
| 1   | 0x0001 | HWT_PARAMETER_ERROR Hardware test parameter error                                             |
| 2   | 0x0002 | HWT_INIT_ERROR Hardware test initialisation error                                             |
| 100 | 0x0064 | HWT_MEM_MARCHC_ERROR Hardware test RAM check error                                            |
| 101 | 0x0065 | HWT_MEM_GALPAT_ERROR Hardware test RAM check error                                            |
| 200 | 0x00C8 | HWT_STACK_UNDERFLOW_ERROR Hardware test stack underflow                                       |
| 201 | 0x00C9 | HWT_STACK_OVERFLOW_ERROR Hardware test stack overflow                                         |
| 300 | 0x012C | HWT_CPU_ERROR Hardware test CPU error                                                         |
| 400 | 0x0190 | WT_FW_ERROR Hardware test firmware error                                                      |
| 500 | 0x01F4 | HWT_FWINTERFACE_ERROR Hardware test firmware error                                            |
| 504 | 0x01F8 | HWT_ADC_ERROR: Test handler: error in ADC value range checks Hardware test AD converter error |
| 505 | 0x01F9 | HWT_DMA_ERROR: Test Handler: error in DMA check Hardware test DMA checksum error              |
| 506 | 0x01FA | HWT_CRC_ERROR: Test Handler: error in CRC check                                               |

| ld  | Hex    | Explanation                                                                                     |  |
|-----|--------|-------------------------------------------------------------------------------------------------|--|
|     |        | Hardware test CCRC checksum error                                                               |  |
| 507 | 0x01FB | HWT_TIMER_ERROR: Test handler: error in timer check Hardware test CPU timer error               |  |
| 508 | 0x01FC | HWT_CLOCK_ERROR: Test Handler: error in clock signal check Hardware test CPU clock error        |  |
| 512 | 0x0200 | TIMEOUT_ERR: Timeout detected. Software timeout detected                                        |  |
| 513 | 0x0201 | OUT_OF_RANGE_ERR: Parameter or value out of allowed range. Parameter range error                |  |
| 514 | 0x0202 | OVERWRITE_ERR: Register buffer data overwrite occurred.  Data overflow occurred                 |  |
| 516 | 0x0204 | PRG_CNTRL_ERR: Program sequence control detected error. Program execution error detected        |  |
| 517 | 0x0205 | "Soft-Error" detected Software error detected                                                   |  |
| 528 | 0x0210 | INIT_ERROR: Initialisation error Initialisation error                                           |  |
| 592 | 0x0250 | ASSERT_TRUE_ERR: Assertion for expression yields "true" failed. Assertion for "true" failed     |  |
| 593 | 0x0251 | ASSERT_NOT_NULL_ERR: Assertion for unequal to NULL failed. Assertion for unequal to NULL failed |  |
| 594 | 0x0252 | ASSERT_GE_ERR: Assertion for ">=" comparison failed. Assertion for ">=" comparison failed       |  |
| 595 | 0x0253 | ASSERT_GT_ERR: Assertion for ">" comparison failed. Assertion for ">" comparison failed         |  |
| 596 | 0x0254 | ASSERT_LE_ERR: Assertion for "<=" comparison failed. Assertion for "<=" failed                  |  |
| 597 | 0x0255 | ASSERT_LT_ERR: Assertion for "<" comparison failed. Assertion for "<" failed                    |  |
| 598 | 0x0256 | ASSERT_NE_ERR: Assertion for "<>" comparison failed. Assertion for "<>" failed                  |  |
| 599 | 0x0257 | ASSERT_EQ_ERR: Assertion for "=" comparison failed. Assertion for "=" failed                    |  |
| 600 | 0x0258 | ASSERT_FALSE_ERR: Assertion for expression yields "false" failed. Assertion for "false" failed  |  |
| 672 | 0x02A0 | MRAM is not initialized MRAM is not initialized                                                 |  |
| 673 | 0x02A1 | MRAM_READ_ERR: MRAM Read error. MRAM read error                                                 |  |
| 676 | 0x02A4 | MRAM_CORRUPT_PAGE_SIZE: MRAM invalid page size. MRAM page size error                            |  |
|     |        |                                                                                                 |  |

| ld         | Hex             | Explanation                                                                                          |
|------------|-----------------|------------------------------------------------------------------------------------------------------|
|            |                 | MRAM_CRC_ERR: MRAM data CRC check failed.                                                            |
| 677        | 0x02A5          | MRAM checksum error (CRC error)                                                                      |
| 688        | 0x02B0          | LZS logging is not initialized yet.                                                                  |
| 689        | 0x02B1          | LZS logging is initialized.                                                                          |
| 692        | 0x02B4          | LZS world time timer has been initialized.                                                           |
| 696        | 0x02B8          | Request file system reset.                                                                           |
| 697        | 0x02B9          | Request deleting boot app from file system.                                                          |
| 698        | 0x02BA          | Boot app deleted from file system.                                                                   |
| 699        | 0x02BB          | Reset of file system activated.                                                                      |
| 700        | 0x02BC          | System request cancelled due to timeout.                                                             |
| 768        | 0x0300          | RESET_LOW_POWER: Reset due to low power supply. Reset due to undervoltage                            |
| 769        | 0x0301          | RESET_WINDOW_WD: Reset due to window watchdog. Reset due to window watchdog                          |
| 770        | 0x0302          | RESET_INDEPENDENT_WD: Reset due to independent watchdog. Reset due to watchdog timer                 |
| 771        | 0x0303          | RESET_SW: Reset due to software reset. Reset due to software reset                                   |
| 772        | 0x0304          | RESET_POWER_ON_DOWN: Reset due to power up or down. Reset due to switching on or switching off       |
| 773        | 0x0305          | RESET_NMI: Reset due to non-maskable interrupt. Reset due to non-maskable interrupt                  |
| 774        | 0x0306          | RESET_BROWNOUT: Reset due to brown out detection. Reset due to CPU undervoltage                      |
| 775        | 0x0307          | RESET_NO_REASON: Reset due to unknown reason. Reset for no known reason                              |
| 778        | 0x310           | Reset due to invalid reason Reset due to invalid reason                                              |
| 1024       | 0x0400          | ADC_REF_LOW: Reference voltage too low. AD converter reference voltage too low                       |
| 1025       | 0x0401          | ADC_REF_HIGH: Reference voltage too high. AD converter reference voltage too high                    |
| 1028       | 0x0404          | ADC_5V_LOW: 5 V supply voltage too low. (ErrReg: 4) 5V load power supply below the tolerance range   |
| 1029       | 0x0405          | ADC_5V_HIGH: 5 V supply voltage too high. (ErrReg: 4) 5V load power supply above the tolerance range |
| 1030       | 0x0406          | ADC_3_3V_LOW: 3,3 V supply voltage too low. Internal 3.3V power supply below the tolerance range     |
| 1031       | 0x0407          | ADC_3_3V_HIGH: 3,3 V supply voltage too high.                                                        |
| S-01060101 | -0000 B-Nimis S | SC-1000-Safety-PLC Handbuch EN 1-50.docx                                                             |

| ld   | Hex    | Explanation                                                                                                                                                                                                       |
|------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |        | Internal 3.3V power supply above the tolerance range                                                                                                                                                              |
| 1032 | 0x0408 | ADC_TEMP_LOW: On-chip temperature too low. (ErrReg: 8) Ambient temperature too low                                                                                                                                |
| 1033 | 0x0409 | ADC_TEMP_HIGH: On-chip temperature too high. (ErrReg: 8) Ambient temperature too high                                                                                                                             |
| 1034 | 0x040A | ADC_CURR_HIGH: Total output current too high. (ErrReg: 2) Total output current too high                                                                                                                           |
| 1036 | 0x040C | Temperature reached warning limit Temperature reached warning limit                                                                                                                                               |
| 1037 | 0x040D | Data value not yet available Data value not yet available                                                                                                                                                         |
| 1280 | 0x0500 | LINE_TIMEOUT: Invalid sync line level from base board Synchronisation wire level monitoring timed out                                                                                                             |
| 1282 | 0x0502 | TIMEOUTTIMERERR: Timeout occurred Timeout timer error                                                                                                                                                             |
| 1283 | 0x0503 | HW_REVISION_ERROR: Invalid HW revision detected (the SW currently running is not designed for this HW revision) Incorrect hardware / PCB revision (the SW currently running is not designed for this HW revision) |
| 1664 | 0x0680 | MC1_NOTREADY: MC1 has not yet initiated communication to MC3 MC1 has not yet initiated communication to MC3                                                                                                       |
| 2048 | 0x0800 | BCOM_NOTREADY: Communication to base board not ready / operational Base-board communication not ready / operational                                                                                               |
| 2049 | 0x0801 | BCOM_BUSY: Communication to base board is busy Base-board communication overloaded                                                                                                                                |
| 2050 | 0x0802 | BCOM_NONEWDATA: No new data received from base board Base-board communication – no new data received                                                                                                              |
| 2051 | 0x0803 | BCOM_CRCERR: Communication to base board detected a CRC error Base-board communication – checksum error detected                                                                                                  |
| 2052 | 0x0804 | BCOM_BITERR: Shifted bits detected  Communication with base board – shifted bits detected                                                                                                                         |
| 2304 | 0x0900 | XCOM_NOTREADY: Communication with safety partner MC not ready / operational Communication with safety partner microcontroller not ready / operational                                                             |
| 2305 | 0x0901 | XCOM_BUSY: Communication with safety partner is busy Communication with safety partner microcontroller overloaded                                                                                                 |
| 2306 | 0x0902 | XCOM_NONEWDATA: Communication with safety partner microcontroller – no new data received                                                                                                                          |
| 2307 | 0x0903 | XCOM_CRCERR: Communication with safety partner detected a CRC error Communication with safety partner microcontroller – checksum error detected                                                                   |
| 2336 | 0x0920 | 3S RTS background communication to safety partner MC not read operational                                                                                                                                         |

| ld   | Hex    | Explanation                                                                              |
|------|--------|------------------------------------------------------------------------------------------|
| 2337 | 0x0921 | 3S RTS background communication to safety partner is busy                                |
| 2338 | 0x0922 | 3S RTS background communication has not yet received new data from safety partner MC     |
| 2339 | 0x0923 | 3S RTS background communication to safety partner detected a CRC error                   |
| 2340 | 0x0924 | BGCOM_QUEUEERR: 3S RTS background communication to safety partner detected a queue error |
| 2352 | 0x0930 | 3S RTS VM communication to safety partner MC not read operational                        |
| 2353 | 0x0931 | 3S RTS VM communication to safety partner is busy                                        |
| 2354 | 0x0932 | 3S RTS VM communication has not received new data from safety partner MC                 |
| 2355 | 0x0933 | 3S RTS VM communication to safety partner detected a CRC error                           |
| 2560 | 0x0A00 | I2C_TIMEOUT: I2C communication timeout detected                                          |
| 2561 | 0x0A01 | I2C_BUSY: I2C bus is busy                                                                |
| 2976 | 0x0BA0 | FSoE Master finished initialization                                                      |
| 2977 | 0x0BA1 | FSoE Master is shutting down                                                             |
| 3329 | 0x0D01 | MC1_ID_INVALID: Identification of MC 1 failed                                            |
| 3330 | 0x0D02 | MC2_ID_INVALID: Identification of MC 2 failed                                            |
| 3331 | 0x0D03 | MC3_ID_INVALID: Identification of MC 3 failed                                            |
| 3841 | 0x0F01 | FLASH_TIMEOUT: FLASH operation timeout                                                   |
| 3842 | 0x0F02 | FLASH_LOCKED: FLASH operation failed because "LOCK" bit could not be reset               |
| 3851 | 0x0F0B | FLASH_BUSY: FLASH operation busy, sequence error in flash programming                    |
| 3854 | 0x0F0E | FLASH_ERROR: FLASH operation error, programming of the flash memory failed               |

### 7.3.6. MC 1: Error line 2008h

| Designation     | Value             |
|-----------------|-------------------|
| Name            | Err.line          |
| Index           | 2008 <sub>h</sub> |
| Object Code     | VARIABLE          |
| No. of Elements | 0                 |
| Data Type       | UNSIGNED16        |
| Access          | Read              |
| PDO Mapping     | No                |

### 7.3.7. MC 1: Error module 2009h

| Designation     | Value             |
|-----------------|-------------------|
| Name            | Error module      |
| Index           | 2009 <sub>h</sub> |
| Object Code     | VARIABLE          |
| No. of Elements | 0                 |
| Data Type       | UNSIGNED8         |
| Access          | Read              |
| PDO Mapping     | No                |

The table below explains the entries in object 2009 $_{h}$  "error code".

| ld | Hex  | Explanation                                                        |
|----|------|--------------------------------------------------------------------|
| 0  | 0x00 | OBJ_UNKNOWN_ID Error from module: unknown                          |
| 4  | 0x04 | OBJ_PRGCONTROLTASK_ID Error from module: CProgramControlTask.cpp   |
| 8  | 0x08 | OBJ_SAFETYHAL_ID Error from module: CSafetyHal.cpp                 |
| 12 | 0x0C | OBJ_MAINTASK_ID Error from module: CMainTask.cpp                   |
| 16 | 0x10 | OBJ_PRGCONTRLTASK_ID Error from module: CProgramControlTask.cpp    |
| 20 | 0x14 | OBJ_SYNCSAFETYPARTNER_ID Error from module: CSyncSafetyPartner.cpp |
| 24 | 0x18 | OBJ_XCOM_ID Error from module: CXcom.cpp                           |
| 28 | 0x1C | OBJ_BBCOM_ID Error from module: CBBCom.cpp                         |
| 29 | 0x1D | OBJ_VMCOM_ID Error from module: CVMCom module                      |
| 30 | 0x1E | OBJ_BGCOM_ID Error from module: CBGCom module                      |
| 52 | 0x34 | OBJ_HELPER_ID Error from module: CHelper.cpp                       |
| 56 | 0x38 | OBJ_SYNCLINE_ID Error from module: CSyncSafetyPartner.cpp - sync() |
| 58 | 0x40 | OBJ_TESTHANDLER_ID Error from module: CTestHandler.cpp             |

| ld  | Hex  | Explanation                                                       |
|-----|------|-------------------------------------------------------------------|
| 72  | 0x48 | OBJ_DIAGNOSTIC_ID Error from module: CDiagnostic.cpp              |
| 74  | 0x50 | OBJ_FSOEMASTER_ID Error from module: CHAL_FSoEMaster_Template.cpp |
| 88  | 0x58 | OBJ_INTHANDLER_ID Error from module: InterruptHandler.cpp         |
| 192 | 0xC0 | OBJ_SPI_ID Error from module: CSpi.cpp                            |
| 193 | 0xC1 | OBJ_TIMER_ID Error from module: CTimer.cpp                        |
| 194 | 0xC2 | OBJ_BACKUPSRAM_ID Error from module: CBackupSRam.cpp              |
| 195 | 0xC3 | OBJ_PWR_ID Error from module: CPwr.cpp                            |
| 196 | 0xC4 | OBJ_RCC_ID Error from module: CRcc.cpp                            |
| 197 | 0xC5 | OBJ_GPIO_ID Error from module: CGpio.cpp                          |
| 198 | 0xC6 | OBJ_DMASTREAM_ID Error from module: CDmaStream.cpp                |
| 199 | 0xC7 | OBJ_ADC_ID Error from module: CAdc.cpp                            |
| 200 | 0xC8 | OBJ_WD_ID Error from module: CWatchdog.cpp                        |
| 201 | 0xC9 | OBJ_FLASH_ID Error from module: CFlash.cpp                        |
| 202 | 0xCA | OBJ_CRC_ID Error from module: CCrc.cpp                            |
| 203 | 0xCB | OBJ_I2C_ID Error from module: CI2c.cpp                            |
| 208 | 0xD0 | OBJ_APPIF_ID Error from module: CECatApplInterface.cpp            |

### 7.3.8. MC 1: Error class 200Ah

| Designation     | Value             |
|-----------------|-------------------|
| Name            | Err.class         |
| Index           | 200A <sub>h</sub> |
| Object Code     | VARIABLE          |
| No. of Elements | 0                 |
| Data Type       | UNSIGNED8         |
| Access          | Read              |
| PDO Mapping     | No                |

The table below explains the meaning of the entries in object 200A $_{h}$  "Error Class".

| ld | Explanation                                               |
|----|-----------------------------------------------------------|
| 0  | No Error                                                  |
| 1  | Serious error or synchronisation error                    |
| 2  | Internal communication error Internal communication error |
| 3  | I/O Error<br>I/O Error                                    |
| 4  | Error in Test Handler Error in the Test Handler           |

## 7.3.9. MC 1: System Uptime [s] 200Ch

| Designation     | Value             |
|-----------------|-------------------|
| Name            | System uptime [s] |
| Index           | 200Ch             |
| Object Code     | VARIABLE          |
| No. of Elements | 0                 |
| Data Type       | UNSIGNED32        |
| Access          | Read              |
| PDO Mapping     | No                |
| Units           | s                 |
| Default Value   | No default Value  |

## 7.3.10. Read / write world time [s] (LOG Time) 200 $\!D_h$

| Designation     | Value                                  |
|-----------------|----------------------------------------|
| Name            | Read / write world time [s] (GMT, UTC) |
| Index           | 200D <sub>h</sub>                      |
| Object Code     | VARIABLE                               |
| No. of Elements | 0                                      |
| Data Type       | UNSIGNED32                             |
| Access          | Read / Write                           |
| PDO Mapping     | No                                     |
| Units           | s                                      |
| Default Value   | No default Value                       |

## 7.3.11. MC 3: 3,3 V Supply Voltage [mV] 2013h

| Designation     | Value                           |
|-----------------|---------------------------------|
| Name            | MC 3: 3,3 V Supply Voltage [mV] |
| Index           | 2013 <sub>h</sub>               |
| Object Code     | VARIABLE                        |
| No. of Elements | 0                               |
| Data Type       | UNSIGNED32                      |
| Access          | Read                            |
| PDO Mapping     | No                              |
| Units           | mV                              |
| Default Value   | No default Value                |

# 7.3.12. Temperatur warning 2016 $_{h}$

| Designation     | Value                               |
|-----------------|-------------------------------------|
| Name            | Temperature warning                 |
| Index           | 2016 <sub>h</sub>                   |
| Object Code     | VARIABLE                            |
| No. of Elements | 0                                   |
| Data Type       | UNSIGNED8                           |
| Access          | Read                                |
| PDO Mapping     | No                                  |
| Value           | 0°C - 55°C = 0; <0°C oder >55°C = 1 |
| Default Value   | No default Value                    |

## 7.3.13.MC 1: LZS component ID 2017h

| Designation     | Value                 |
|-----------------|-----------------------|
| Name            | MC 1: LZS componentId |
| Index           | 2017 <sub>h</sub>     |
| Object Code     | VARIABLE              |
| No. of Elements | 0                     |
| Data Type       | UNSIGNED32            |
| Access          | Read                  |
| PDO Mapping     | No                    |
| Default Value   | No default Value      |

### 7.3.14. MC 1: LZS file ID 2018h

| Designation     | Value            |
|-----------------|------------------|
| Name            | MC 1: LZS fileId |
| Index           | 2018h            |
| Object Code     | VARIABLE         |
| No. of Elements | 0                |
| Data Type       | UNSIGNED32       |
| Access          | Read             |
| PDO Mapping     | No               |
| Default Value   | No default Value |

### 7.3.15.MC 1: LZS line 2019h

| Designation     | Value             |
|-----------------|-------------------|
| Name            | MC 1: LZS line    |
| Index           | 2019 <sub>h</sub> |
| Object Code     | VARIABLE          |
| No. of Elements | 0                 |
| Data Type       | UNSIGNED32        |
| Access          | Read              |
| PDO Mapping     | No                |
| Default Value   | No default Value  |

## 7.3.16. MC 1: Read number of CORA test cycles 201Ah

| Designation     | Value                                 |
|-----------------|---------------------------------------|
| Name            | MC 1: Read number of CORA test cycles |
| Index           | 201A <sub>h</sub>                     |
| Object Code     | VARIABLE                              |
| No. of Elements | 0                                     |
| Data Type       | UNSIGNED32                            |
| Access          | Read                                  |
| PDO Mapping     | No                                    |

| Designation   | Value            |
|---------------|------------------|
| Default Value | No default Value |

## 7.3.17. MC 1: Read number of file system test cycles 201Bh

| Designation     | Value                                        |
|-----------------|----------------------------------------------|
| Name            | MC 1: Read number of file system test cycles |
| Index           | 201B <sub>h</sub>                            |
| Object Code     | VARIABLE                                     |
| No. of Elements | 0                                            |
| Data Type       | UNSIGNED32                                   |
| Access          | Read                                         |
| PDO Mapping     | No                                           |
| Default Value   | No default Value                             |

## 7.3.18. MC 1: Read number of IAR test cycles 201 $C_h$

| Designation     | Value                                |
|-----------------|--------------------------------------|
| Name            | MC 1: Read number of IAR test cycles |
| Index           | 201C <sub>h</sub>                    |
| Object Code     | VARIABLE                             |
| No. of Elements | 0                                    |
| Data Type       | UNSIGNED32                           |
| Access          | Read                                 |
| PDO Mapping     | No                                   |
| Default Value   | No default Value                     |

#### 7.3.19. SW Build No 210Ah

| Designation     | Value             |
|-----------------|-------------------|
| Name            | SW Build No       |
| Index           | 210A <sub>h</sub> |
| Object Code     | VARIABLE          |
| No. of Elements | 0                 |
| Data type       | UNSIGNED16        |
| Access          | Read              |

| Designation   | Value            |
|---------------|------------------|
| PDO Mapping   | No               |
| Default Value | No default Value |

### 7.3.20. Read MC 3 error 2210h

| Designation     | Value           |
|-----------------|-----------------|
| Name            | Read MC 3 error |
| Index           | 2210h           |
| Object Code     | RECORD          |
| No. of Elements | 3               |

| Designation   | Value             |
|---------------|-------------------|
| Name          | Number of entries |
| Subindex      | 00 <sub>h</sub>   |
| Data type     | UNSIGNED8         |
| Access        | Read only         |
| PDO Mapping   | No                |
| Default Value | 3                 |

| Designation | Value              |
|-------------|--------------------|
| Name        | MC 3: Error number |
| Subindex    | 01 <sub>h</sub>    |
| Data type   | UNSIGNED16         |
| Access      | Read only          |
| PDO Mapping | No                 |

| Designation | Value            |
|-------------|------------------|
| Name        | MC 3: Error line |
| Subindex    | 02 <sub>h</sub>  |
| Data type   | UNSIGNED16       |
| Access      | Read only        |
| PDO Mapping | No               |

| Designation | Value              |
|-------------|--------------------|
| Name        | MC 3: Error module |

| Designation | Value           |
|-------------|-----------------|
| Subindex    | 03 <sub>h</sub> |
| Data type   | UNSIGNED8       |
| Access      | Read only       |
| PDO Mapping | No              |

## 7.3.21. Read MC 1 runtimes 2220<sub>h</sub>

| Designation     | Value             |
|-----------------|-------------------|
| Name            | RunTime MC 1      |
| Index           | 2220 <sub>h</sub> |
| Object Code     | RECORD            |
| No. of Elements | 6                 |

| Designation   | Value             |
|---------------|-------------------|
| Name          | Number of entries |
| Subindex      | 00h               |
| Data type     | UNSIGNED8         |
| Access        | Read only         |
| PDO Mapping   | No                |
| Default Value | 6                 |

| Designation | Value                                                        |
|-------------|--------------------------------------------------------------|
| Name        | Runtime main loop [µs] (Designation in the XML file: Act RT) |
| Subindex    | 01 <sub>h</sub>                                              |
| Data type   | UNSIGNED16                                                   |
| Access      | Read only                                                    |
| PDO Mapping | No                                                           |

| Designation | Value                                                                   |
|-------------|-------------------------------------------------------------------------|
| Name        | Maximum of main loop runtime [µs] (Designation in the XML file: Max RT) |
| Subindex    | 02h                                                                     |
| Data type   | UNSIGNED16                                                              |
| Access      | Read only                                                               |
| PDO Mapping | No                                                                      |

| Designation | Value                                                                               |
|-------------|-------------------------------------------------------------------------------------|
| Name        | Application cycle time (Par. from PS) [μs] (Designation in the XML file: App Cycle) |
| Subindex    | 03 <sub>h</sub>                                                                     |
| Data type   | UNSIGNED16                                                                          |
| Access      | Read only                                                                           |
| PDO Mapping | No                                                                                  |

| Designation | Value                                                          |
|-------------|----------------------------------------------------------------|
| Name        | Application runtime [µs] (Designation in the XML file: App RT) |
| Subindex    | 04 <sub>h</sub>                                                |
| Data type   | UNSIGNED16                                                     |
| Access      | Read only                                                      |
| PDO Mapping | No                                                             |

| Designation | Value                                                             |
|-------------|-------------------------------------------------------------------|
| Name        | Application CORA time [µs] (Designation in the XML file: CORA RT) |
| Subindex    | 05 <sub>h</sub>                                                   |
| Data type   | UNSIGNED16                                                        |
| Access      | Read only                                                         |
| PDO Mapping | No                                                                |

| Designation | Value           |
|-------------|-----------------|
| Name        | Reserved [µs]   |
| Subindex    | 06 <sub>h</sub> |
| Data type   | UNSIGNED16      |
| Access      | Read only       |
| PDO Mapping | No              |

## 7.3.22. MC 3 main loop cycle time and max cycle time 2221 $_{h}$

| Designation     | Value                                                                                        |
|-----------------|----------------------------------------------------------------------------------------------|
| Name            | MC 3 main loop cycle time and max cycle time [µs] (Designation in the XML file: RunTime MC3) |
| Index           | 2221 <sub>h</sub>                                                                            |
| Object Code     | RECORD                                                                                       |
| No. of Elements | 2                                                                                            |

| Designation   | Value             |
|---------------|-------------------|
| Name          | Number of entries |
| Subindex      | 00 <sub>h</sub>   |
| Data type     | UNSIGNED8         |
| Access        | Read only         |
| PDO Mapping   | No                |
| Default Value | 2                 |

| Designation | Value                                                        |
|-------------|--------------------------------------------------------------|
| Name        | Runtime main loop [µs] (Designation in the XML file: Act RT) |
| Subindex    | 01 <sub>h</sub>                                              |
| Data type   | UNSIGNED16                                                   |
| Access      | Read only                                                    |
| PDO Mapping | No                                                           |

| Designation | Value                                                                   |
|-------------|-------------------------------------------------------------------------|
| Name        | Maximum of main loop runtime [µs] (Designation in the XML file: Max RT) |
| Subindex    | 02h                                                                     |
| Data type   | UNSIGNED16                                                              |
| Access      | Read only                                                               |
| PDO Mapping | No                                                                      |

# 7.3.23. Free disk space / app size information 2230 $\!_h$

| Designation     | Value                                                                                 |
|-----------------|---------------------------------------------------------------------------------------|
| Name            | Free disk space / app size information (Designation in the XML file: Free Disk Space) |
| Index           | 2230 <sub>h</sub>                                                                     |
| Object Code     | RECORD                                                                                |
| No. of Elements | 4                                                                                     |

| Designation   | Value             |
|---------------|-------------------|
| Name          | Number of entries |
| Subindex      | 00 <sub>h</sub>   |
| Data type     | UNSIGNED8         |
| Access        | Read only         |
| PDO Mapping   | No                |
| Default Value | 4                 |

| Designation | Value                                                                    |
|-------------|--------------------------------------------------------------------------|
| Name        | Actual local free disk space [Byte] (Designation in the XML file: Local) |
| Subindex    | 01 <sub>h</sub>                                                          |
| Data type   | UNSIGNED16                                                               |
| Access      | Read only                                                                |
| PDO Mapping | No                                                                       |

| Designation | Value                                                                      |
|-------------|----------------------------------------------------------------------------|
| Name        | Actual global free disk space [Byte] (Designation in the XML file: Global) |
| Subindex    | 02 <sub>h</sub>                                                            |
| Data type   | UNSIGNED16                                                                 |
| Access      | Read only                                                                  |
| PDO Mapping | No                                                                         |

| Designation | Value                                                                       |
|-------------|-----------------------------------------------------------------------------|
| Name        | Actual application code size [Byte] (Designation in the XML file: App Code) |

| Designation | Value           |
|-------------|-----------------|
| Subindex    | 03 <sub>h</sub> |
| Data type   | UNSIGNED16      |
| Access      | Read only       |
| PDO Mapping | No              |

| Designation | Value                                                                       |
|-------------|-----------------------------------------------------------------------------|
| Name        | Actual application data size [Byte] (Designation in the XML file: App Data) |
| Subindex    | 04h                                                                         |
| Data type   | UNSIGNED16                                                                  |
| Access      | Read only                                                                   |
| PDO Mapping | No                                                                          |

# 7.3.24. ST CPU Chip Id MC 1 (96 bit serial number) 5001 $_{h}$

| Designation     | Value                                                                            |
|-----------------|----------------------------------------------------------------------------------|
| Name            | ST CPU Chip Id MC 1 (96 bit serial number) (Designation in the XML file: Id MC1) |
| Index           | 5001 <sub>h</sub>                                                                |
| Object Code     | RECORD                                                                           |
| No. of Elements | 4                                                                                |

| Designation | Value             |
|-------------|-------------------|
| Name        | Number of entries |
| Subindex    | 00h               |
| Data type   | UNSIGNED8         |
| Access      | Read only         |
| PDO Mapping | No                |

| Designation | Value                                                                              |
|-------------|------------------------------------------------------------------------------------|
| Name        | MC 1 id received: 1 - OK, 0 - failed (Designation in the XML file: ld rx from MC1) |
| Subindex    | 01 <sub>h</sub>                                                                    |
| Data type   | UNSIGNED16                                                                         |
| Access      | Read only                                                                          |
| PDO Mapping | No                                                                                 |

| Designation | Value                                                |
|-------------|------------------------------------------------------|
| Name        | Id bits 031 (Designation in the XML file: Bits 0-31) |
| Subindex    | 02h                                                  |
| Data type   | UNSIGNED16                                           |
| Access      | Read only                                            |
| PDO Mapping | No                                                   |

| Designation | Value                                                  |
|-------------|--------------------------------------------------------|
| Name        | Id bits 3263 (Designation in the XML file: Bits 32-63) |
| Subindex    | 03 <sub>h</sub>                                        |
| Data type   | UNSIGNED16                                             |
| Access      | Read only                                              |
| PDO Mapping | No                                                     |

| Designation | Value                                                     |
|-------------|-----------------------------------------------------------|
| Name        | Id bits 6495<br>(Designation in the XML file: Bits 64-95) |
| Subindex    | 04 <sub>h</sub>                                           |
| Data type   | UNSIGNED16                                                |
| Access      | Read only                                                 |
| PDO Mapping | No                                                        |

## 7.3.25. ST CPU Chip Id MC 3 (96 bit serial number) 5003 ${\rm h}$

| Designation     | Value                                                                            |
|-----------------|----------------------------------------------------------------------------------|
| Name            | ST CPU Chip Id MC 3 (96 bit serial number) (Designation in the XML file: Id MC3) |
| Index           | 5003 <sub>h</sub>                                                                |
| Object Code     | RECORD                                                                           |
| No. of Elements | 4                                                                                |

| Designation   | Value             |
|---------------|-------------------|
| Name          | Number of entries |
| Subindex      | 00h               |
| Data type     | UNSIGNED8         |
| Access        | Read only         |
| PDO Mapping   | No                |
| Default Value | 4                 |

| Designation | Value                                                                            |
|-------------|----------------------------------------------------------------------------------|
| Name        | Identification state: 1 - OK, 0 - failed (Designation in the XML file: Id valid) |
| Subindex    | 01 <sub>h</sub>                                                                  |
| Data type   | UNSIGNED16                                                                       |
| Access      | Read only                                                                        |
| PDO Mapping | No                                                                               |

| Designation | Value       |
|-------------|-------------|
| Name        | ld bits 031 |
| Subindex    | 02h         |
| Data type   | UNSIGNED16  |
| Access      | Read only   |
| PDO Mapping | No          |

| Designation | Value           |
|-------------|-----------------|
| Name        | ld bits 3263    |
| Subindex    | 03 <sub>h</sub> |
| Data type   | UNSIGNED16      |
| Access      | Read only       |
| PDO Mapping | No              |

| Designation | Value           |
|-------------|-----------------|
| Name        | Id bits 6495    |
| Subindex    | 04 <sub>h</sub> |
| Data type   | UNSIGNED16      |
| Access      | Read only       |
| PDO Mapping | No              |

# 7.4. Objects - For Internal Use Only

The objects listed below are not intended for use by the end user. Some of them are used for configuration purposes.

| Object              | Meaning/Designation                |
|---------------------|------------------------------------|
| 0x10F1h             | Error Settings                     |
| 0x1C00h             | Sync Manager Type                  |
| 0x1C32h             | SM Output Parameter                |
| 0x1C33h             | SM Input Parameter                 |
| 0x2000h             | Ref Voltage for μC1                |
| 0x2002h             | Supply 5 Voltage for μC1           |
| 0x2003h             | Supply 3.3 Voltage for μC1         |
| 0x200Bh             | Number of CORA Test Cycles for μC1 |
| 0x2020h             | MaxAsicDataUnequalCounter          |
| 0x2212h             | Post Result Flag                   |
| 0x2220h             | MC1 Main Loop Cycle Time           |
| 0x5001h             | ld MC1                             |
| 0x5003h             | ld MC3                             |
| 0x5E5E <sub>h</sub> | Generation of the 'Device stamp'   |

## 7.5. Standards Complied With

#### 7.5.1. Product Standard Applied

- → EMC Directive 2014/30/EU
- → EN 61131-2:2007

Programmable logic controllers – Part 2: Equipment requirements and tests

#### 7.5.2. Safety Standards and Directives

- → IEC 61508:2010 Parts 1-7
  - Functional safety of electrical/electronic/programmable electronic safety-related systems
- → EN ISO 13849-1:2015
  - Safety of machinery Safety-related parts of control systems Part 1: General principles for design
- → EN 62061:2005 + AC:2010 + A1:2013 + A2:2015
  - Safety of machinery Functional safety of electrical, electronic and programmable electronic safety-related control systems
- → EN 60204-1:2006 + A1:2009 + AC:2010 (excerpts)
  Safety of machinery Safety-related parts of control systems -Part 1: General principles for design

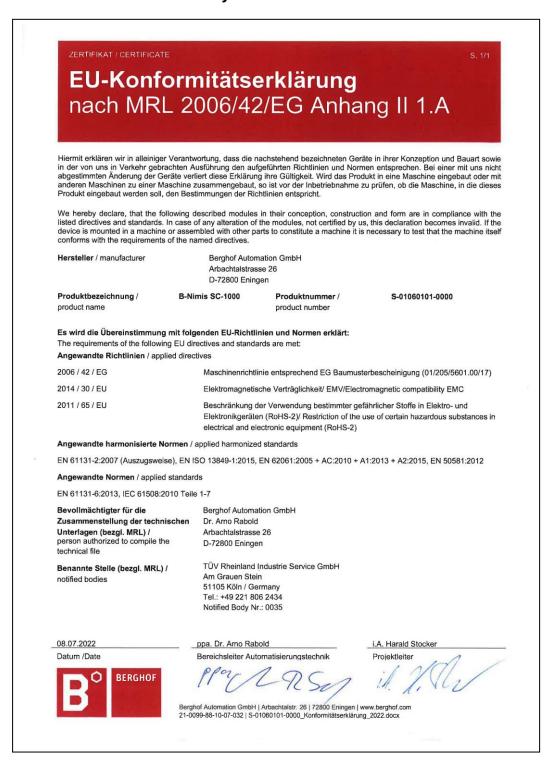
#### 7.5.3. EMC Standards

#### **EMC Immunity from interference**

- → Generic standard DIN EN 61000-6-2:2005
  - Electromagnetic compatibility (EMC) Part 6-2: Generic standards Immunity for industrial environments
- → Product standard DIN EN 61131-2:2007
  - Programmable logic controllers Part 2: Equipment requirements and tests

#### Enhanced interference immunity levels of safety-related applications

→ DIN EN 61131-6:2012


Programmable logic controllers - Part 6: Functional Safety

#### **EMC** Emission of interference

- → Generic standard EN 61000-6-4:2007 + A1:2011
  - Electromagnetic compatibility (EMC) Part 6-4: Generic standards Emission standard for industrial environments
- → Product standard EN 61131-2:2007
  - Programmable logic controllers Part 2: Equipment requirements and tests

## 7.6. Regulations and Declarations

#### 7.6.1. Declaration of Conformity



The original EC Declaration of Conformity and the associated documentation can be made available to the competent authorities. Please contact the Project Management, as necessary.

#### 7.6.2. TÜV Certificate

#### EC Type-Examination Certificate Reg.-Nr./No.: 01/205/5601.01/22 Prüfgegenstand Product tested E-I/O Safety PLC, Safety Controller für E- Zertifikats-Berghof Automation GmbH I/O System über FSoE inhaber E-I/O Safety PLC, Safety Controller for E-I/O System via FSoE holder Arbachtalstrasse 26 72800 Eningen Typbezeichnung Type designation B-Nimis SC-1000 - S-01060101-0000 (E-I/O Safety PLC - 204909000) Prüfgrundlagen Codes and standards EN ISO 13849-1:2015 EN 61508 Parts 1-7:2010 EN 61131-2:2007 EN 61326-3-1:2017 Die sichere speicherprogrammierbare Steuerung erfüllt die Anforderungen der Prüfgrundlagen (Kat. 4 / PL e nach EN ISO 13849-1, SIL 3 nach EN 61508). Die Steuerung kann im Anwendungsbereich der EN 60204-1:2018 und EN IEC 62061:2021 eingesetzt werden. The safety programmable logic controller complies with the requirements of the relevant standards (Cat. 4 / PL e acc. to EN ISO 13849-1, SIL 3 acc. to EN 61508). The product can be Bestimmungsgemäße Verwendung Intended application used in the application area of EN 60204-1:2018 and EN IEC 62061:2021. Die Hinweise in der zugehörigen Installations- und Betriebsanleitung sowie des Sicherheitshandbuchs sind zu beachten. The instructions of the associated Installation, Operating and Safety Manual shall be considered. Besondere Bedingungen Specific requirements Es wird bestätigt, dass der Prüfgegenstand mit den Anforderungen nach Anhang I der Richtlinie 2006/42/EG über Maschinen übereinstimmt. It is confirmed, that the product tested complies with the requirements for machines defined in Annex I of the EC Directive 2006/42/EC. Gültig bis / Valid until 2027-06-29 Der Ausstellung dieses Zertifikates liegt eine Prüfung zugrunde, deren Ergebnisse im Bericht Nr. 968/FSP 1413.03/22 vom 29.06.2022 dokumentiert sind. Dieses Zertifikat ist nur gültig für Erzeugnisse, die mit dem Prüfgegenstand übereinstimmen. The issue of this certificate is based upon an examination, whose results are documented in Report No. 968/FSP 1413.03/22 dated 2022-06-23 This certificate is valid only for products which are identical with the product tested. 0035 lied Bo Köln, 2022-06-29 Dipl.-Ing. Jelena Stenzel Notified Body for Machinery, NB 0035 www.fs-products.com **TÜV**Rheinland® www.tuv.com

Precisely Right.

# 7.7. List of figures

| Fig. 1: Safety PLC                                          | 15 |
|-------------------------------------------------------------|----|
| Fig. 1: Safety PLCFig. 2: System overview                   | 16 |
| Fig. 3: B-Nimis I/O system                                  | 17 |
| Fig. 4: FSoE Logo                                           | 18 |
| Fig. 5: CODESYS-Logo                                        | 19 |
| Fig. 6: External features of the Safety PLC Module          | 20 |
| Fig. 7: Response time in multi-module operation (example)   | 28 |
| Fig. 8: Dimensions in mm                                    | 30 |
| Fig. 9: Imprinted Texts and Symbols                         | 32 |
| Fig. 10: Front view with serial number                      | 33 |
| Fig. 11: Status LEDs                                        | 34 |
| Fig. 12: Installation position and minimum clearances in mm |    |
| Fig. 13: Installing a module                                | 38 |
| Fig. 14: Disconnecting modules                              | 39 |
| Fig. 15: Removing a module                                  | 39 |
| Fig. 16: Earthing (for example an I/O module)               | 40 |

#### **Customer Service / Addresses** 8.

Repair work on the Safety PLC Module is not permitted. In the event of a defect, return the module to Berghof Automation GmbH Customer Service.

#### **Customer Service** 8.1.

Berghof Automation GmbH Arbachtalstr. 26 72800 Eningen Germany T +49.7121.894-0 F +49.7121.894-100 E-mail: support-controls@berghof.com

www.berghof.com