
Read this manual thoroughly before you start working with CODESYS Safety.

CODESYS® Safety

User Manual

Copyright © 3S-Smart Software Solutions 2017

3S-Smart Software Solutions GmbH
Memminger Str. 151
87439 Kempten
Germany
Telephone: +49-831-54031-0
Fax: +49-831-54031-50
E-mail: info@codesys.com
Internet: www.codesys.com
Document Version: V7.0

Note: Not all CODESYS features are available in all territories. For
more information on geographic restrictions, please
contact support@codesys.com

17.07.20172

Table of contents
1 Introduction... 9

1.1 Objective of this manual... 9
1.2 Scope of this manual.. 10
1.3 Classification into the information landscape.............. 10

2 Requirements and general information.......................... 11
2.1 Intended use... 11
2.2 Qualified personnel... 11
2.3 Warranty and liability... 11
2.4 General safety notices.. 12
2.5 System requirements.. 12
2.6 Correct version and configuration of the CODESYS

Safety development system.. 13
2.7 Handling error messages from CODESYS Safety...... 15

3 Norms and standards... 19
4 Planning the overall system.. 29

4.1 Planning devices and allocation................................. 30
4.2 Planning response times.. 31
4.3 Planning the addresses.. 35

5 Software development with CODESYS Safety............... 37
5.1 General information ... 37
5.2 Setting up a safety project.. 37
5.2.1 Prepare planned devices... 37
5.2.2 Setting up the safety application.............................. 38
5.2.3 Setting up user management in the project............. 43
5.2.4 Setting up the admin password on the controller..... 46
5.2.5 Access protection with link to source control........... 46
5.3 Device administration .. 46
5.4 Libraries.. 48
5.5 Project structure.. 49
5.5.1 Insertion of a safety controller into the project tree.. 49
5.5.2 Safety controller... 49
5.5.3 Safety Logic... 51
5.5.4 Safety application.. 51
5.5.4.1 Safety application object....................................... 51
5.5.4.2 Logical I/Os... 60
5.5.4.2.1 Overview of logical I/Os..................................... 60
5.5.4.2.2 Usage types of the logical I/Os.......................... 63
5.5.4.2.3 Editor of the logical I/Os..................................... 70
5.5.4.2.4 Use of logical I/Os in the project........................ 75
5.5.4.3 POUs.. 75
5.5.4.4 Safety Task... 79
5.5.4.5 Global Variable List (GVL).................................... 81

Table of contents

17.07.2017 3

5.5.4.6 Network variables - Communication between
safety controllers... 83

5.5.4.7 Library manager.. 84
5.6 Variable declaration.. 86

6 Programming... 89
6.1 Overview of programming... 89
6.1.1 Language elements... 90
6.1.2 Deviations of the language elements from

PLCopen Safety... 91
6.1.3 IEC 61131-3 conformity... 91
6.1.4 Differences of programming in standard

CODESYS... 93
6.2 Programming guidelines... 94
6.2.1 Recommendations for the documentation of the

code... 94
6.2.2 Rules for identifiers of safety objects and variables. 95
6.2.3 Defensive programming... 97
6.2.4 Design rules for PLCopen-compliant function

blocks... 97
6.2.5 Rules for using PLCopen-compliant function

blocks... 105
6.2.6 Automatically checked programming guidelines.... 106
6.3 Programming of the application logic........................ 109
6.3.1 GVL.. 109
6.3.2 POUs... 109
6.3.3 Variables.. 110
6.3.3.1 In general about variables................................... 110
6.3.3.2 Data types... 114
6.3.3.3 Variables for Basic POUs.................................... 115
6.3.3.4 Variables for Extended POUs............................. 117
6.3.4 Networks.. 119
6.3.4.1 Overview of networks.. 119
6.3.4.2 Data flow and assignments................................. 122
6.3.4.3 Operators.. 123
6.3.4.4 Jump/return and jump label................................ 128
6.3.4.5 FB calls... 130
6.4 Linking of I/O devices... 132
6.4.1 Access to Input and Output Signals....................... 132
6.4.2 Linking digital 1oo1 and 1oo2 Input Devices......... 132
6.4.3 Monitoring of digital input and output devices........ 134
6.4.4 Linking of input devices .. 136
6.5 Cross-communication with network variables........... 136
6.5.1 Sampling rate and undersampling......................... 138
6.6 Task configuration... 141
6.7 Examples.. 141
6.7.1 Programming example for Basic Level.................. 141

Table of contents

17.07.20174

7 Application generation and online mode..................... 147
7.1 Introduction .. 147
7.2 Connection to the safety controller........................... 148
7.2.1 Communication settings general information......... 149
7.2.2 Connection setup... 149
7.2.3 Device name.. 151
7.3 Log in to the controller and switch it to debug mode 152
7.4 Creation and restart of the boot application.............. 156
7.5 Operating modes.. 158
7.5.1 Operating state and application state.................... 158
7.5.2 Debug mode and organizational safety................. 161
7.5.3 Exiting the application.. 162
7.6 Monitoring and debugging.. 163
7.6.1 Monitoring.. 163
7.6.2 Flow control... 164
7.6.3 Debug mode of the safety controller...................... 165
7.6.4 Debug commands: Write/Force............................. 166
7.6.5 Debug commands: Start/Stop and Reset applica-

tion... 168
7.7 Online information from the safety controller............ 169
7.8 Coordination with the Main Controller....................... 170

8 Pinning the software... 173
9 Software verification... 179

9.1 Introduction... 179
9.2 Requirements of verification/validation..................... 181
9.2.1 PL-e safety applications... 181
9.2.2 SIL3 safety applications... 181
9.3 Static verification... 182
9.3.1 Static verification.. 182
9.3.2 Device configuration and communication inter-

face.. 182
9.3.3 Automatic checking of the programming guide-

lines... 183
9.3.4 Manual checking of the programming guidelines.. 184
9.3.5 Manual check of POU use..................................... 185
9.3.6 Application-specific checks.................................... 185
9.3.6.1 Check against the specification.......................... 185
9.3.6.2 Using cross-reference list and go to definition.... 186
9.3.6.3 Global control flow analysis................................ 187
9.3.6.4 Local control flow analysis in the Extended

Level... 188
9.3.6.5 Data flow analysis... 189
9.4 Dynamic verification.. 191
9.4.1 Dynamic verification and validation....................... 191
9.4.2 Online tests.. 191
9.4.2.1 Monitoring of variables.. 192

Table of contents

17.07.2017 5

9.4.2.2 Online test in the Extended Level....................... 194
9.4.3 Complete functional test of the application............ 195
9.4.4 Verification in the finished machinery.................... 196

10 Software acceptance and documentation.................... 199
10.1 Introduction .. 199
10.2 Conditions and proofs for the acceptance.............. 200
10.3 Functions for the acceptance.................................. 204
10.3.1 Archiving.. 204
10.3.2 Printing project documentation............................ 207
10.4 Documentation for operators and integrators......... 208

11 Software update.. 211
11.1 Overview of versioning.. 211
11.2 Updating the device version.................................... 211
11.3 Updating the firmware and execution version......... 212
11.4 Updating the CODESYS version............................ 214
11.5 Extension of CODESYS with packages.................. 214

12 Operation... 217
12.1 IT security during operation.................................... 217
12.1.1 Security measures in the environment of the

safety controller... 218
12.1.2 Security measures in the safety controller........... 219
12.1.3 Protection of the safety controller against write

access.. 222
12.1.4 Protection of the safety controller against teleac-

cess... 223
12.1.5 Monitoring security-relevant results..................... 224
12.2 Monitoring errors during operation.......................... 224
12.2.1 Increased communication error frequency.......... 224
12.2.2 User behavior for error messages....................... 224
12.3 Diagnosis of errors during operation....................... 224
12.3.1 Connection to the safety controller for teleac-

cess... 225
12.3.2 Information on firmware and boot application 226
12.3.3 Log: Diagnosis of system and runtime errors...... 227
12.3.4 Status: Communication diagnosis....................... 229
12.4 Administration with CODESYS............................... 230
12.5 Procedure for maintenance.................................... 233
12.5.1 Temporary mode change to unsafe mode........... 233
12.6 Maintenance and service.. 234
12.6.1 Installing a new boot application.......................... 234
12.6.2 Installing the firmware update.............................. 235
12.6.3 Hardware exchange... 235
12.7 Changes to networks and fieldbuses...................... 237
12.8 Procedure for decommissioning and removing the

safety controller.. 237

Table of contents

17.07.20176

13 Procedure in case of changes to, and re-use of the
accepted software... 239
13.1 Procedure in case of changes to, and re-use of the

software.. 239
13.2 Re-use of an accepted safety project..................... 240
13.3 Re-use of function blocks....................................... 241
13.4 Changes in the project.. 242
13.4.1 Changes in the project... 242
13.4.2 Changes in projects with cross-communication... 245

14 Fieldbuses and network variables................................ 247
14.1 General section... 247
14.2 PROFIsafe.. 252
14.2.1 Library Safety PROFIsafeHost............................ 253
14.2.2 PROFIsafe parameters: F-parameters and i-

parameters... 254
14.2.3 PROFIsafe specific evidence for the acceptance 257
14.3 FSoE... 257
14.3.1 Library Safety FSoEMaster.................................. 259
14.3.2 FSoE parameters... 260
14.3.3 FSoE specific evidence for the acceptance......... 261
14.4 Network variables... 261
14.4.1 Library 'SafetyNetVar'.. 263
14.4.2 Safety NetVar parameters.................................... 265
14.4.3 Safety NetVar specific evidence for the accept-

ance... 265
15 Predefined function blocks.. 267

15.1 Version list of the function blocks............................ 267
15.1.1 Notes About Version Lists.................................... 267
15.1.2 Applicative libraries.. 267
15.1.3 Driver Libraries.. 270
15.2 Specific Safety Notes for Applicative Library Func-

tion Blocks.. 271
16 List of permitted or modified functions........................ 275

16.1 Permitted commands.. 275
16.2 Permitted views.. 278
16.3 Modified standard functions.................................... 283

17 IEC 61131-3 Compliance... 285
18 Bibliography.. 297
19 Glossary... 299
20 Index... 309

Table of contents

17.07.2017 7

Table of contents

17.07.20178

1 Introduction
This manual applies to CODESYS Safety. This manual is part of
the CODESYS Safety product package and must be read uncondi-
tionally before creating a safety application with CODESYS Safety.
This applies to the planners, programmers, commissioning engi-
neers, operators, and maintenance personnel of automation sys-
tems with safety functions.
Requirements for the comprehension of this manual: very good
CODESYS proficiency and basic knowledge of IEC 61131-3.
We hope you will enjoy reading this manual.

1.1 Objective of this manual
This manual contains information for the intended use of
CODESYS Safety controllers and their programing with CODESYS
Safety, including the safety configuration and the parameterization
of connected field devices.
The manual contains notices that must be followed unconditionally
when creating your application. The following kinds of safety
notices are used:

DANGER!
Disregard of these safety instructions may lead
directly to personal injury.

CAUTION!
Disregard of these safety instructions may lead to
hazards at a later time.

NOTICE!
Disregard of these instructions may lead to errors
and problems in the development and verification
of the safety project.

This symbol indicates information for improved
understanding.

Introduction
Objective of this manual

17.07.2017 9

1.2 Scope of this manual
This document describes all versions of CODESYS Safety for
which the revision list (appendix) of the certificate for CODESYS
Safety (located at fs-products.tuvasi.com) lists the version of the
manual as cited on page 2 of this document. (For version verifica-
tion, see Ä Chapter 2.6 “Correct version and configuration of the
CODESYS Safety development system” on page 13.)
The described version of CODESYS Safety can be installed on dif-
ferent CODESYS versions. Therefore, the representation of the
user interface may vary between this manual and the CODESYS
Safety online help. Other variations may also occur. See
Ä Chapter 2.6 “Correct version and configuration of the CODESYS
Safety development system” on page 13.

1.3 Classification into the information landscape
This manual focuses on the following:
n Security and safety notices
n Development process of safety applications with CODESYS

Safety
n Exact specification of the language subset that is available for

the creation of a safety application
n Online access and operation ofCODESYS Safety safety con-

trollers
n Questions about software configuration, version control, and

changes
This refers to only the development environment in English.
For work with CODESYS Safety, you need additional documenta-
tion depending on the use case. In this document, this documenta-
tion is referenced when appropriate.
On the other hand, the CODESYS online help (extended after
installing the safety extension) contains:
n Description of using CODESYS
n Description of handling projects, library versions, and modified

meaning of the version information of the safety extension
n Information about programming and configuring the main con-

troller and the fieldbuses

Introduction
Classification into the information landscape

17.07.201710

http://fs-products.tuvasi.com

2 Requirements and general information
2.1 Intended use

CODESYS Safety is software for programming safety controllers
(type CODESYS Control Safety — CODESYS Safety controllers)
and for the safety configuration and parameterization of connected
field devices.
CODESYS Safety is intended for the development of safety appli-
cations as application software up to SIL3 according to IEC 61508 /
62061 and Cat. 4 PL-e according to ISO 13849.
CODESYS Safety controller implement the logic of safety functions
in industrial environments. When permitted by the manufacturer's
manual, they can be deployed up to safety integrity level SIL3
according to IEC 61508 and PL-e according to ISO 13849-1.
The application programs must be generated only with the
CODESYS Safety programming tool which is intended for this pur-
pose. Environmental conditions (e.g. temperature) for intended use
of the controller must also be taken into consideration according to
the manufacturer's manual.

2.2 Qualified personnel
The requirement for using safety products is suitable proficiency.
As a result, personnel who plan, create, and commission safety
applications with this product must be qualified as follows:
n Appropriate technical training
n Familiarity with applicable standards and regulations
n Familiarity with relevant safety concepts in automation tech-

nology
n Familiarity with basic regulations for accident prevention and

occupational health and safety, as well as any special works
regulations

n Knowledge of manufacturer-specific manuals for the safety
controller and the connected safety field devices and protective
devices

n Read and understood the safety notices in this manual
n Proficiency in CODESYS programming

2.3 Warranty and liability
Warranty and liability claims are forfeited
n if the damage is attributable to disregard of the applicable

standards, the user manual, the integration manual or the
online help,

n if the instructions in this user manual are not followed or
n if the operators are not properly trained

Requirements and general information
Warranty and liability

17.07.2017 11

2.4 General safety notices
A project that was created with CODESYS Safety does not guar-
antee that the entire application is safe.

CAUTION!
The user must create appropriate safety concepts
for the plants, machinery, and programs.

CAUTION!
Manufacturers and operators of machinery with
CODESYS Safety controllers must take responsi-
bility for compliance with all relevant national and
international legal regulations, safety regulations,
and standards during development, installation,
commissioning, operation, and technical checks.

CAUTION!
The information from the user manual for
CODESYS Safety and the manufacturer-specific
manuals of the employed safety-relevant devices
must be followed.

CAUTION!
For working with safety applications, only the com-
mands, tools, user interfaces control elements,
editor tabs, and views must be used that are listed
in Ä Chapter 16 “List of permitted or modified func-
tions” on page 275.

2.5 System requirements
For the development system, the following minimum system
requirements apply to smaller CODESYS Safety projects with a
maximum of 100 function blocks, a maximum of 10 visualizations,
and a maximum of 8 fieldbus devices:
n 1 GB RAM
n 1 GHz Pentium
n 1 GB available hard disc space
n Screen resolution 1024 x 768

Requirements and general information
System requirements

17.07.201712

NOTICE!
The CODESYS Safety development system is
approved for the following only:
– Operating systems: Windows 7 (64-bit) or Win-

dows 10 (64-bit)
– Screen resolution: 96 dpi

2.6 Correct version and configuration of the CODESYS Safety development
system

NOTICE!
Verify that the version of CODESYS Safety in oper-
ation is the same version that is described in this
document. In CODESYS Safety, activate the
“Show safety version information” command in the
“Help” category. The version of CODESYS Safety
that is shown must be valid for the document ver-
sion of the user manual as specified on page 2.
The validity can be checked by comparison with
the revision list (appendix) related to the
CODESYS Safety certificate at
fs-products.tuvasi.com.

NOTICE!
Notice about the Safety version
Verify by means of the Package Manager whether
additional plug-ins have been installed (“Tools
è Package Manager”). If these are not permitted
explicitly for use with CODESYS Safety, then the
suitability of the functions of CODESYS Safety is
no longer guaranteed for critical steps in the devel-
opment process. This affects in particular:
– Views of the safety objects, “Safety Online

Information” tabs
– Online commands
– "Safety cross-reference list" and "Go to defini-

tion"
– Document project
– Archive project
The functions shall no longer used for online
access, verification, or acceptance. (Unless you
perform a tool validation of your installation
according to IEC 61508, Part 3).

Notice Installation1

Notice Installation2

Requirements and general information
Correct version and configuration of the CODESYS Safety development system

17.07.2017 13

http://fs-products.tuvasi.com

Explanation of version information:
A version of CODESYS Safety always has the form "CODESYS
Safety 1.2.x". It is shown in the revision list this way, as well as in
CODESYS Safety at “Help è Show safety version information”
(with more information).
The version display there has the form as in this example
"CODESYS Safety 1.2.0 (CODESYS V3.5 SP8 Patch 4)":
n The first part is the version of CODESYS Safety. It corresponds

to the first three places of the package version of the
CODESYS Safety extension.

n The information in parentheses indicate the version of the cur-
rent CODESYS basis (CODESYS V3.5 SP8 Patch 4 in the
example).

At the start of safety engineering in the project, the message
"Invalid installation" may appear if the special current basis is not
released by 3S-Smart Software Solutions GmbH for the safety ver-
sion in use.

Some of the views, commands, and dialogs that are used for
safety engineering originate from the CODESYS basis. As a result,
their appearance, behavior, and functional scope vary depending
on which CODESYS version is used as the basis.
In Ä Chapter 16 “List of permitted or modified functions”
on page 275, you will find the lists of views and commands that
can be used for CODESYS Safety, and which ones can vary in
appearance and behavior depending on the version of the
CODESYS basis in use.
n CODESYS frame window
n CODESYS Safety (“Devices” view and “POUs” view)
n “Messages” view
n “Watch list” view
n “ToolBox” view
n Device editor frame window
n “Help è Information” dialog
n Device editor, “Communication settings” tab
n Library manager
n “Tools è Device Repository” dialog
n “Tools è Library Repository” dialog

“Edit è Find Replace” dialog
n and other small dialogs/views
Opening a safety project in CODESYS affects the behavior of
some standard commands and views of CODESYS.

User interface variance

Setting up CODESYS for working
with CODESYS Safety

Requirements and general information
Correct version and configuration of the CODESYS Safety development system

17.07.201714

NOTICE!
CODESYS provides two possible views of the
communication settings. The new graphical view is
not approved for use with CODESYS Safety.
Before opening the “Communication settings” tab
in the “Tools è Options è Device editor” dialog,
activate the “Use classic display of the
communication settings” option.

NOTICE!
Set the language for the user interface and online
help (including the user manual) to the language of
CODESYS Safety that is running on your system.
Set the language settings in “Tools è Options
è International settings”.

2.7 Handling error messages from CODESYS Safety

NOTICE!
The user is required to report safety-relevant errors
immediately to the respective device manufacturer.

NOTICE!
Any occurrence of an undefined error must be
reported immediately to the device manufacturer!

Notice Installation3

Notice Installation4

User behavior in case of undefined
or safety-relevant errors

Requirements and general information
Handling error messages from CODESYS Safety

17.07.2017 15

Safety installation check
If a message appears that the current CODESYS
Safety installation is invalid and the application will
be closed, then one of the following cases may
have occurred:

– The safety extension has been installed on
another CODESYS version that is not released
for CODESYS Safety.
Solution: Use a CODESYS version that is
released for CODESYS Safety.

– Another installed package has changed the
valid combination of CODESYS and
CODESYS Safety.
Solution: Uninstall the additional package.

– The installation of the safety extension is
broken.
Solution: Uninstall the CODESYS Safety
extension package and install it again.

– The installation of CODESYS is broken.
Solution: Uninstall CODESYS and install it
again. Install the CODESYS Safety extension
package again.

CAUTION!
Opening projects
When opening a project, if the message appears
that the project was loaded incompletely, then
none of the activities described in this manual are
permitted in a safety application of the project.

The message about the incompletely loaded project is possible
only 1) if the project was saved with another profile, 2) if licensing
keys for licensed plug-ins are missing, or 3) if the installation was
changed.
In this case, you must perform the following tasks in order to open
the project without the described message appearing.
1. Save the project with the correct profile.
or acquire a license
or customize the installation
2. Restart CODESYS
3. Open the project
￫ The project opens without the error message.

Installation error when working
with CODESYS Safety

Internal software error when
opening projects

Requirements and general information
Handling error messages from CODESYS Safety

17.07.201716

Despite the taking care in every step of product development, the
occurrence of a software error in CODESYS Safety cannot be
ruled out entirely.

NOTICE!
Please report all software errors to the manufac-
turer.

CAUTION!
If you see a message from the self-monitoring of
the software (“Assertion error” , “ Exception” ,
“Unhandled exception” or “Trapped exception”),
then you will not be permitted to continue working
on the safety project. It is imperative to quit (save
the project if necessary) and restart CODESYS
Safety.

Fig. 1: Example of "Assertion error" error message

Fig. 2: Example of "Exception" error message

Internal software error while
working with CODESYS

Requirements and general information
Handling error messages from CODESYS Safety

17.07.2017 17

Requirements and general information
Handling error messages from CODESYS Safety

17.07.201718

3 Norms and standards

The versions of the standards valid on 1 July 2012
are considered.

Machine manufacturers and operators of technical plants are
responsible for ensuring that machinery or plants meet the require-
ments for health and safety at work. If the respective relevant
standards are adhered to, this ensures that the machinery or
device manufacturer or the installer of a plant has fulfilled its duty
to exercise diligence and that the state of the art has thus been
attained.
The machinery directive defines a uniform safety level for the pre-
vention of accidents for machinery brought onto the market within
the European Economic Area (EEA) and in Switzerland and
Turkey.
It is the duty of the device manufacturer to furnish proof of adher-
ence to the underlying requirements. The proof can be furnished
by adherence to the respective European standards (EN). These
(harmonized) standards are listed in the Official Journal of the
European Union.
n EN IEC 62061 and EN ISO 13849: For the functional part of

the safety of control systems
n Specific harmonized (product) standards: For the functional

part of the safety of individual machinery types (machine tools,
woodworking machines, printing machines, packaging
machines, etc.)

These standards have the absolute higher priority for the machi-
nery manufacturer. By adhering to these standards it can be
assumed that the fundamental safety requirements of the machi-
nery directive are fulfilled.
CODESYS Safety is suitable for programming the safety functions
of the machinery in conformity with these standards:

The valid safety standards

Norms and standards

17.07.2017 19

Fig. 3: CODESYS Safety overview of safety standards

Norm / Standard Description

EN IEC 61508 Basic safety standard that considers the system as a whole.
Defines SIL, LVL, organizational requirements

EN IEC 62061
EN ISO 13849

Area safety standard for the functional safety of control systems.
Harmonized EU standards
EN IEC 62061: Classified according to SIL
EN ISO 13849: Classified according to PL

EN IEC 61131-3 Standard for programmable logic controllers.
Defines 5 programming languages, including FBD

PLCopen
"Safety Software"

Programming guidelines
Separation of signals (safe/non-safe)
Certified function blocks

Depending on the severity of the damage risk, EN IEC 62061 and
EN ISO 13849 place different demands on the reliability of the pro-
grammed safety functions of the machinery.
EN ISO 13849 defines various reliability levels for this, called PL-a
to PL-e.
EN IEC 62061 refers in addition to the EN IEC 61508 basic safety
standard, where the reliability levels SIL1 to SIL4 are defined.

Safety levels

Norms and standards

17.07.201720

The IEC61508 standard describes the certification of electrical,
electronic and programmable electronic systems (E/E/PES for
short). According to this standard integrable software parts can
also be certified. It is the basic standard to which EN IEC 62061
and EN ISO 13849 refer.
The two levels systems correspond to each other approximately as
follows:

Table 1: Correspondence of PL to SIL
PL SIL

a No correspondence

b 1

c 1

d 2

e 3

No correspondence 4

CODESYS Safety is appropriate for machinery at the levels SIL1 to
SIL3 and PL-a to PL-e

So that the programmed safety function attains the necessary relia-
bility level, the development of the control software must already
meet certain requirements.
On the whole, EN IEC 61508 defines the cycle of the complete
system with 16 phases, starting with Phase1: "Concept" and
ending with Phase16: "Decommissioning". CODESYS Safety is
used as a tool in EN IEC 61508 Phase10 "Realization, safety soft-
ware life cycle".
The standard demands among other things the definition of a
safety plan, the creation of software specifications, the definition of
programming guidelines and the planning of test activities.
The requirements of the standard are reduced by the use of a
Limited Variability Language (or LVL for short), because with these
languages the program logic can be expressed more clearly and
can be more easily understood and verified. These easier require-
ments are defined in the EN IEC 62061 and EN ISO 13849 stand-
ards. (When using unlimited programming languages, both stand-
ards refer to the 61508 basic standard (with general, complex
requirements))
The LVLs include in particular the graphic languages of EN IEC
61131-3, such as FBD or LD. They do not include the textual lan-
guages such as C, ST, assembler or IL.

Requirements of the software
development

Norms and standards

17.07.2017 21

It is often cost-intensive and complicated for machinery manufac-
turers to comply with all standards, since they are confronted with
several safety-related standards. During the design of machinery
and plants the safety-related and functional parts of the application
are frequently developed separately from each other and are only
combined at the end. Although the safety aspects are taken into
consideration in this way, they are not integrated in the total system
philosophy from the outset. Modern, software-based control sys-
tems and safety protocol layers for industrial fieldbuses now permit
the intermeshed development of the safety-related and functional
parts of the application from the outset.

In accordance with all relevant safety standards, the general basic
requirements for a safety application are:
n distinction between safety and non-safety functions
n use of suitable programming languages or subsets of program-

ming languages
n use of validated software modules
n use of suitable programming guidelines
n use of recognized error-reducing measures for the life cycle of

the safety-related software
In order to reduce the expenditure for fulfilling these high require-
ments, the PLCopen Committee TC has compiled a solution for all
points. This standardized solution is supported by CODESYS
Safety in all aspects.

Fig. 4: PLCopen software architecture model

The PLCopen concept for safety
software

PLCopen concept 1: Integrated
systems and integrated develop-
ment

Norms and standards

17.07.201722

The safety-related and functional parts of the application are repre-
sented in the software architecture model (Fig. 4) as safety appli-
cation or functional application respectively. In CODESYS Safety,
the functional application runs on the main controller and the safety
application on the safety controller. The aim of PLCopen is, instead
of different development environments for the respective sub-appli-
cations, to extend the development environment for the functional
application by an integral part for the safety application.
n The safety application processes the safe inputs and controls

the safe outputs, while the functional application processes the
non-safe inputs and controls the non-safe outputs. The func-
tional application can access the safe inputs and the global
variables for reading (indicated by the left arrow).

n The non-safe signals can only be used in the safety application
for checking the program flow and cannot be directly con-
nected to safe outputs (indicated by right arrow and AND oper-
ator).

CODESYS Safety is thus an extension of the standard CODESYS
development environment (for functional applications) for the
development of safety applications. The complete machinery appli-
cation, consisting of functional application and safety application
with corresponding inputs and outputs and data exchange between
them, is developed in a common development environment in a
common project.

Cross-communication between controllers represents an extension
of the classic 3-stage architecture "Inputs--Controller--Outputs", as
in the PLCopen software architecture model. By using safety net-
work variables in the safety application, safe cross-communication
between the safety controllers is also possible (as long as they
support the CODESYS Safety network variables feature).
Using safety network variables is considered in the following archi-
tecture model. There is a second safety application and therefore
also an another functional application. The signals from the safe
inputs are evaluated by the PLCopen function blocks, processed in
one of the two safety applications, and then evaluated in the
PLCopen function blocks for actuating the safe outputs.

Extension of the PLCopen concept
with cross-communication

Norms and standards

17.07.2017 23

Fig. 5: Software architecture model with cross-communication

When using network variables, the data can be communicated
between the safety applications in two different ways:
n Outputs of the sensor monitoring service; implemented by

PLCopen function blocks
n Request for a safety function that is represented as cause/

effect in the model

In order to make a clear distinction between safety-relevant signals
and standard signals, new data types were defined with the identifi-
cation "SAFE". This indicates to the developer that the signals are
safety-relevant and need to be treated with special care. Further-
more the connection of data can be checked automatically by this
identification in order to discover all impermissible connections
between standard signals and safety-relevant signals. Although the
SAFE data types cannot guarantee that the signal status is safe
(for example if the peripherals are incorrectly wired), it is neverthe-
less an organizational tool for the minimization of errors in the
application program. This simplifies and shortens the verification of
the signal flow. SAFE data types can be used within a safety-rele-
vant environment. They should be used to distinguish between
safe and non-safe signals with the aim of simplifying the validation
and certification.
CODESYS Safety handles only signals from and to safe field
devices as values of a SAFE data type and automatically checks
the correct linking of SAFE data types in the application logic.

The PLCopen has drawn up several rules for the uniform definition
of safety-related function blocks and applied them in its function
blocks. These "General Rules for safety-related function blocks"
apply to PLCopen-compliant function blocks.

PLCopen concept 2: Separation of
safe aspects from the non-safe
aspects

PLCopen concept 3: Appropriate
language with programming guide-
lines

Norms and standards

17.07.201724

The PLCopens preferred languages are the function block diagram
(FBD) and the instruction list (IL), since programming units can be
relatively easily created and easily read and checked with these
languages. The view of the program code is clearly structured and
resembles the traditional discrete wiring of safety assemblies. In
CODESYS Safety, the FBD programming language is available for
the implementation of the program code of the safety application.
On the basis of the requirements in accordance with programming
guidelines, the PLCopen "Safety Software" working group has
defined programming rules at two levels: basic level and extended
level.
Basic level: The basic approach is that the safety program con-
sists only of certified function blocks, which can be easily intercon-
nected in graphic form. If the structure of the connection between
the FBs is additionally limited, a view in the style of modern I (i.e.
integrated development environment) can be developed that works
in a similar way to the traditional discrete wiring of safety subas-
semblies. The programs have a clear structure and can be easily
read. In addition to that the time for the release of the program is
significantly shortened, since it consists of already certified function
blocks.
Extended level: In the case of projects for which the present state
of the certified function blocks is insufficient, the user can create
the required function blocks (or even the program) in the extended
level. An extended language subset is provided for this. However
the validation of the functions of these blocks and programs can be
considerably more complex and therefore more time-consuming,
since the programs are subject to the complete verification
process. Once the function blocks are verified/validated, they can
be used together with the advantages described above in the Basic
Level.

Norms and standards

17.07.2017 25

Fig. 6: Recommended area of application of the two programming
levels

CODESYS Safety supports these PLCopen rules by automatically
checking these programming guidelines and the linkage rules. It
checks function blocks that are marked as Basic against the basic
rules and function blocks that are marked as Extended against the
extended rules. In the event of a violation an application cannot be
loaded to the controller. Adherence to the rules is thus automati-
cally proven.
Only a few rules still need to be checked manually (see Ä Chapter
9.3.4 “Manual checking of the programming guidelines”
on page 184).

Ultimately the PLCopen has defined a set of function blocks that
define constantly recurring functions of safety applications. This set
of function blocks supports the typical safety equipment in manu-
facturing automation. The table below (Ä Table 2 “Assignment of
the safety devices to the PLCopen function blocks” on page 27)
shows how the functions of the safety equipment are assigned to
the individual PLCopen function blocks.

PLCopen concept 4: Standardized
function blocks

Norms and standards

17.07.201726

Fig. 7: Device types of the safety equipment in manufacturing auto-
mation

Table 2: Assignment of the safety devices to the PLCopen function
blocks

Operating
elements

Emergency stop switch
(EN 418)

SF_EmergencyStop

Two-hand operation (EN
574)

SF_TwoHandControlTy-
peII / III

Confirmation button,
operating mode selec-
tion switch (IEC 60204)

SF_EnableSwitch,
SF_ModeSelector

Sensors Safety door (EN
953/1088)

SF_SafetyGuardMoni-
toring, SF_SafetyGuar-
dLocking (Safety Guard
Interlocking with
Locking)

Light barrier (IEC
61496 / 62046)

SF_ESPE, SF_Testable
SafetySensor

Muting sensors (IEC
61496 / 62046)

SF_MutingSeq,
SF_MutingPar,
SF_MutingPar_2Sensor

Outputs Drive/valve with safe
state (IEC 60204) or
safe function (IEC
60204)

SF_SafetyRequest

Relay with feedback
contact (IEC 60204)

SF_EDM

non-safe switched output
with monitoring (IEC
60204)

SF_OutControl

IEC 61131-3 describes the programming languages that are used
for the programming of controllers. It defines the FBD language, of
which the PLCopen has defined subsets and for which the
PLCopen has defined programming rules.

IEC 61131-3

Norms and standards

17.07.2017 27

Norms and standards

17.07.201728

4 Planning the overall system
For the safety-related part of the control system of machinery, dif-
ferent topologies can be selected depending on the communication
options of the employed safety controllers and their main control-
lers.
n T1: The safety functions of the machinery are implemented

locally at the fieldbus master with a single safety controller
within one or more fieldbuses.

n T2: The safety functions of the machinery are implemented
locally within one or more fieldbuses, each with several decen-
tralized safety controllers that do not communicate with each
other.

n T3: The safety functions of the machinery are implemented in
several fieldbuses with several safety controllers that communi-
cate with each other by means of safety network variables.

After the safety risks in a machine are identified and safety func-
tions for risk reduction are defined, the safety-oriented part of the
control system of the machinery can be planned. Several points
should be considered for this:
1. Allocation. For the safety functions of the machinery, corre-
sponding field devices, fieldbuses, and safety controllers must be
planned. See Ä Chapter 4.1 “Planning devices and allocation”
on page 30. This results in the input and output signals and func-
tional requirements for the safety applications of the individual
safety controllers that are in development.
2. Response times. In order to achieve the necessary response
times for a safety function in the machinery, corresponding pow-
erful devices and time settings in the devices must be planned.
See Ä Chapter 4.2 “Planning response times” on page 31. This
results in requirements on configuration settings in the safety appli-
cations.
3. Uniqueness. For communication between safety controllers and
safe field devices and between safety controllers themselves, dif-
ferent unique addresses and IDs must be assigned depending on
the fieldbus. For topologies T2 and T3, this must be planned
beyond the individual safety controllers. See Ä Chapter 4.3 “Plan-
ning the addresses” on page 35. This results in requirements on
configuration settings in the safety applications.
4. System requirements. For Ethernet-based fieldbuses (e.g.
EtherCAT and PROFINET) and for network variables, additional
system requirements may apply for restricting the network, devices
in the network, and the communication error rate. For specific
requirements, see the sections "System requirements" in
Ä Chapter 14 “Fieldbuses and network variables” on page 247.
5. Access protection: When in operation, the protection of the
safety functions requires protective measures on various levels. In
particular for cross-communication (T3), the network used for this
purpose must be protected on the machinery level (see Ä Chapter
12.1 “IT security during operation” on page 217). The planning
should include that certain protective measures must be taken
when in operation.

Planning the overall system

17.07.2017 29

4.1 Planning devices and allocation
In order to implement the safety functions of the machinery, corre-
sponding sensors and actuators, corresponding safe field devices
in corresponding fieldbuses and corresponding safety controllers
must be planned. The safety functions must be allocated to them.

NOTICE!
The maximum number of safe field devices for a
safety function can be restricted by the fieldbus, for
example 100 for PROFIsafe (see Ä Chapter 14.2
“PROFIsafe” on page 252).

Typically, a safety function is implemented by a safety controller
and the safe field devices in the same fieldbus, which are allocated
exclusively to it. (This is always the case with T1 and T2.) For sim-
plicity, the sensors and actuators that are necessary for the safety
function of a safety controller should be connected directly to this
safety controller (and therefore also the main controller).

NOTICE!
The maximum number of safe field devices in the
same fieldbus or safety controllers in the same
fieldbus (T2 only) can be restricted by the specific
fieldbus. See Ä Chapter 14 “Fieldbuses and net-
work variables” on page 247.

Every planned safety controller requires a safety application. For
this purpose, a software development process must be started. A
specification must be created for the safety application (not neces-
sarily a separate document). For verification, a functional (black
box) test must be planned for each safety application according to
the specification and performed in the verification phase. See
Ä Chapter 9.4.3 “Complete functional test of the application”
on page 195.

A safety function can be distributed to several fieldbuses (even
fieldbuses of different types) on field devices and safety controllers
by establishing communication between the safety controllers of
these fieldbuses (T3). Then the corresponding network between
the controllers must be included in the planning.
For this kind of distribution, the sensors, actuators, and field
devices are always monitored in the safety controller in the same
fieldbus as the field devices. A decision must be made on which
safety controller the safety function (cause/effect) is triggered (see
Ä “PLCopen concept 1: Integrated systems and integrated devel-
opment” on page 22): on the safety controller with the sensors, or
on the safety controller with the actuators, or are both safety con-
trollers involved in the decision?

Distribution with cross-communi-
cation

Planning the overall system
Planning devices and allocation

17.07.201730

Safety network variables fulfill the function of safe cross-communi-
cation in CODESYS Safety. They permit the configuration and
operation of safe data exchange between CODESYS Safety con-
trollers in a project.
They are designed for the case that several safety controllers
require the same sensor (e.g. emergency stop switch) for their
safety functions. For this purpose, you select a safety controller to
be connected to the sensor. This safety controller must monitor the
sensor and distribute the monitored sensor signal via the NetVar
mechanism to the other safety controllers.
The principle: A CODESYS project contains both safety controllers,
their main controllers, and any other controllers. The safety con-
troller with the sensors publishes the data and the other safety con-
trollers of the project can read the data. The communication
channel is established via the main controllers of the corre-
sponding safety controllers.

4.2 Planning response times
The response time of a safety function (total response time) is the
time from the hazardous event, which is detected by a sensor of
this safety function, until the response of an actuator of this safety
function for establishing safety. A distinction is made for response
times:
n The actual response time Rt in the machinery for a specific

event at time t
n The technical upper limit in error-free operation (worst case)

Rwc of actual response times (this means Rwc ≥ Rt)
n The upper limit that is guaranteed by the safety system for the

response time Rg when a response occurs at the latest, if need
be also by the safe outputs establishing the safe state. Rg ≥
Rwc is required for smooth operation (without an emergency
safe state by the safe outputs).

n The maximum permitted response time Rreq as demanded by
the safety requirements for functional safety of the machinery.
Rreq ≥ Rg is required for safety.

The actual response times, their worst case Rwc, and the shortest
reasonable response time guarantees Rg depend on the topology
and factors of the various devices, fieldbuses, and applications.
The user can influence one part of these factors with CODESYS by
means of configuration (cycles times, monitoring times).
In order for the required response times for a safety function to be
achieved safely in the machinery, corresponding coordinated time
settings must be planned in the various safety applications,
including their safe field devices, and in the fieldbus masters.

Planning the overall system
Planning response times

17.07.2017 31

For a safety function to which two safety controllers are connected
that communicate per safety network variables, the total response
time can be influenced by the following settings: cycle time of the
sender safety application, cycle time of the receiver safety applica-
tion, cycle time of the mapping application of the main controller.

Fig. 8

w and p: Waiting time and processing time

The assured total response time limit Rg is as fol-
lows:

sensor delay + 2 x WD time 1 + 2 x WD time 2 + 2
x WD time 3 + actuator delay

In a project with safety network variables, there are several
watchdog times (see Fig. 8) which altogether result in the total
response time. In this context, each WD time always includes at
least one cycle time of the application, due to the stopwatch
method in the safety controller from cycle start to cycle start (see
Ä “Monitoring time for cross-communication” on page 34).

Response time for cross-communi-
cation

Response time guarantee for
cross-communication

Planning the overall system
Planning response times

17.07.201732

n WD time 1: Configured monitoring time of the fieldbus commu-
nication between safe input device and safety controller 1
– Once as maximum waiting time that can occur by the safe

fieldbus protocol in the input device before it can send a
modified signal from the sensor to safety controller 1. The
signal of the sensor must be present at least this long in
order to guarantee that it can be sampled by safety con-
troller 1.

– And again as maximum transport time for the sent signal to
reach safety controller 1 as input signal. This time monitors
the performance of the fieldbus and the main controller as
intermediary.

n WD time 2: Configured monitoring time of the cross-communi-
cation between safety controller 1 and safety controller 2
– Once as maximum waiting time, including an application

cycle for mapping the new input signals to network varia-
bles before safety controller 1 can send new variable
values to safety controller 2. The values in safety controller
1 must be present at least this long in order to guarantee
that they can be sampled by safety controller 2 (see
Ä Chapter 6.5 “Cross-communication with network varia-
bles” on page 136).

– And again as maximum transport time for the sent variable
values to reach safety controller 2. This time monitors the
performance of the Ethernet connection and both main
controllers as intermediary.

n WD time 3: Configured monitoring time of the fieldbus commu-
nication between safety controller 2 and the safe output device
– Once as maximum waiting time, including an application

cycle for mapping the new variable values to output signals
before safety controller 2 can send a modified output signal
to the output device. The signal in safety controller 2 must
be present at least this long in order to guarantee that it
can be sampled by the output device.

– And again as maximum transport time for the sent signal to
reach the output device. This time monitors the perform-
ance of the fieldbus and the main controller as interme-
diary.

In each step of the safety chain, a signal must present "long
enough" (as the WD time of the connection) in the source (safe
input device, safety controller 1, safety controller 2) so that it has a
chance to be forwarded, even in worst case time behavior. This
means that, when the sensor signal in the input device or a net-
work variable in safety controller 1 or the output signal in safety
controller 2 switches from value A to value D and back to value A
in a short period of time, it could happen that the value D is never
transmitted (undersampling). If a safety function should be
demanded due to the lost value D, then the safety function fails
and functional safety is lost. If one link in the safety chain does not
extend the signal automatically to the minimum size for the next
step (WD time k), then the signal in the previous step must already
be accordingly longer than simply WD time k-1.

Danger of undersampling

Planning the overall system
Planning response times

17.07.2017 33

For example, if safety controller 1 receives the signal from the input
device (or another safety controller 0) and forwards it unpublished,
then the following should be duly noted: The life TQ of the signal in
the input device, which ensures that the signal arrives in safety
controller 1 (TQ≥WD time 1), is not adequate to guarantee a subse-
quent life TS in safety controller 1, which the NVL connection to
safety controller 2 needs (TS≥ WD time 2). The life must therefore
be TQ≥WD time 1 + cycle time safety controller 1 + WD time 2. For
a safety chain with several consecutive NVL connections, the times
of all involved connections and controllers should be combined.

For cross-communication with network variables, the monitoring
time of the connection (WD time 2) depends on the receiver (safety
controller 2).
A monitoring time less than the worst case of the communication
cycle of the network variables does not lead to a stable running
system. Time losses result in the communication cycle because the
application cycles from the sender and receiver are not in sync;
and the system-dependent transport time also has to be consid-
ered.

Fig. 9: Sequence diagram of a network variable communication
cycle: sender (left) and receiver (right)

TS Cycle time of the application from safety controller 1 (NVL
sender)

TR Cycle time of the application from safety controller 2 (NVL
receiver)

TCom Transport time from a safety controller via its main controller
to another main controller and its safety controller

Monitoring time for cross-commu-
nication

Planning the overall system
Planning response times

17.07.201734

n (1): The receiver sends the protocol to the end of the cycle. As
its time base is frozen for the duration of the cycle, the moni-
tored time already begins at the start time "t1" of the cycle.

n (2): The protocol sent from the receiver arrives too late (after
the start of the cycle of the sender). This means that the
reading of the protocol is delayed until the start of the next
cycle.

n (3): The data sent from the receiver arrives late (after the start
of the cycle of the receiver). This means that the check of data
and monitoring time is delayed until the start of the next cycle
(example: "t7").

n (4): Worst case TexcWD of the communication cycle

The lowest reasonable monitoring time (WD time 2) results from
these delay factors.

The lowest reasonable monitoring time for a safety
network variable connection is as follows:

2x transport time TCom + 2x cycle time sender Ts
+ 2x cycle time receiver TR.

4.3 Planning the addresses
Safety protocols, such as PROFIsafe and FSoE, protect the con-
nection between the safety controller and safe field devices via the
standard fieldbus by means of safety addresses (F_Dest_Add and
F_Source_Add for PROFIsafe, and FSoE address and connection
ID for FSoE). Their unique assignment within a fieldbus must be
planned, especially when there are several safety controllers in the
same fieldbus (topology T2). For detailed information about the
uniqueness of fieldbus-specific parameters, see Ä Chapter 14
“Fieldbuses and network variables” on page 247.
Some field devices have several parallel safety connections at the
same time. In this case, each safety connection must have its own
planned address and connection ID, depending on the fieldbus.

For network variables: Safety addresses, connection IDs, and list
identifiers are assigned automatically as unique within a project.
List identifiers are used for CODESYS internal identification. For
each sender/receiver connection, CODESYS needs two identifiers
(one in each direction). (For the receiver, the number is 2; and for
the sender, the number is 2 x max. number of receivers).

Addresses for field devices

Addresses for cross-communica-
tion

Planning the overall system
Planning the addresses

17.07.2017 35

By default, network variables use UDP broadcasts
in the machine network. To reduce the network
load, the IP addresses of the opposite standard
controller can be set static. In this case, it is sen-
sible to assign the IP addresses of all controllers in
the machine network when planning the overall
system.

If the software for the machine is developed in several separate
CODESYS projects, then unique safety addresses, connection IDs,
and list identifiers must be assigned and must be set manually
throughout when planning the overall system (for network varia-
bles).

Multiple CODESYS projects

Planning the overall system
Planning the addresses

17.07.201736

5 Software development with CODESYS Safety

5.1 General information
The following contains a description of the structure of the project
tree and the project tree objects that are available for the creation
of a safety application with CODESYS Safety in accordance with
the guidelines IEC 62061 and ISO 13849.
The creation of a project and the use of the user interface take
place according to the control concept of Standard CODESYS.
Commands from Standard CODESYS that are not available in
CODESYS Safety are usually visible, but cannot be activated.

The safety objects in the project structure and the safety editors
are clearly emphasized by yellow structures and thus clearly differ-
entiate themselves visually from the corresponding standard
objects and standard editors.
In addition the safe signal flows are also marked yellow. This sup-
ports and facilitates the tasks for the development, verification and
acceptance of the safety application.

The PLCopen architecture model (see Fig. 4) is implemented in
CODESYS in the following way:
n The safety controller is inserted under the main controller (see
Ä Chapter 5.5.2 “Safety controller” on page 49).

n All physical devices are inserted in the device tree under the
main controller. They are automatically linked with the correct
controller. In doing so the I/Os of the safety controller are addi-
tionally inserted as logical I/Os under the safety application
(see Ä Chapter 5.5.4.2.1 “Overview of logical I/Os”
on page 60).

n Data exchange between the safety controller and the main
controller takes place via the “GVL for logical exchange” object
of the standard application and “Logical exchange device”
object of the safety application (see Ä Chapter 5.5.4.2.2.3
“Logical I/O for data exchange with the main controller
(standard controller)” on page 67).

5.2 Setting up a safety project
5.2.1 Prepare planned devices

Only controllers and field devices can be programmed and config-
ured that are known in CODESYS. For programming the machine,
corresponding device descriptions must be installed for all control-
lers and field devices from the overall planning (see Ä Chapter 4
“Planning the overall system” on page 29), and the associated
libraries, if necessary.

Yellow safety structures

Implementation of the PLCopen
architecture model

Software development with CODESYS Safety
Setting up a safety project > Prepare planned devices

17.07.2017 37

In the device repository (see Ä Chapter 5.3 “Device administra-
tion ” on page 46), you can check the installed device types and
post-install any missing ones. In the library repository (see online
help), you can check the installed device types and post-install any
missing ones. You can post-install devices and libraries at any time
later when necessary.

5.2.2 Setting up the safety application
1. Create a new project: Click “New project” in the "File" menu.
2. In the “New project” dialog (see Fig. 10) select an “Empty

project” , or an “Empty safety project” (empty project with
template for safety user management) and actuate the “OK”
button.

3. If “Empty safety project” is selected, enter the “Current user”
in the “Logon” dialog (see Fig. 11). The password is empty.
Click “OK” .

4. Add the planned standard controllers (fieldbus master) to the
project: Select the project (in the example: Safety_Project) in
the device tree and activate the “Insert device” context menu
command.

5. Select each controller that should receive a safety controller.
6. Add the standard controller to the safety controller (in the

example Fig. 12): Select the standard controller, activate the
“Insert device” context menu command and select safety
controller (see Fig. 12).

7. For the further steps when using the template with safety
user management, see Ä “Further procedure for safety
project with user management template” on page 42.

Creating a new project with a safety
application

Software development with CODESYS Safety
Setting up a safety project > Setting up the safety application

17.07.201738

Fig. 10: Dialog 'New project'

When creating a safety project it is recommended
to select the “Empty safety project” template in the
“New project” dialog. This template is an empty
project with safety user configuration for the
CODESYS Safety user management.

NOTICE!
If you select “Empty project” as the template, you
will have to completely build the user management
yourself.

For a description of the user management and the safety user con-
figuration, see Ä Chapter 5.2.3 “Setting up user management in
the project” on page 43.

The “Logon” dialog appears immediately upon
selecting the “Empty safety project” template. The
only users created are "Owner", "saf" and "ext"; the
password is empty.

Software development with CODESYS Safety
Setting up a safety project > Setting up the safety application

17.07.2017 39

Fig. 11: Dialog: User and password query when creating a project
with "Empty Safety project"

Fig. 12: Dialog for inserting a safety controller

Software development with CODESYS Safety
Setting up a safety project > Setting up the safety application

17.07.201740

Fig. 13: Project tree with safety application

Objects and/or node points automatically inserted together with the
safety controller and existing only once:
n Safety logic:

Logical node point of the safety controller, below which pre-
cisely one safety application object can be attached.

n SafetyApp:
Node point below which the objects belonging to the safety
application object are located.
Object that defines the execution version of the code and the
currently safeguarded status (pin) of the application (see
Ä Chapter 8 “Pinning the software” on page 173).
The editor of the object manages the list of objects currently
belonging to the safety application object.

n Library manager:
Contains the libraries available on the inserted safety con-
troller.
These are:
– SafetyPLCopen
– SafetyStandard
– further device-dependent libraries if necessary

n Logical I/Os:
Node point to which logical I/O objects can be added. These
added logical I/Os are used for the exchange of data and I/Os
with the standard controller

n Safety task:
This object lists all programs that are loaded to, and executed
on the controller.

Software development with CODESYS Safety
Setting up a safety project > Setting up the safety application

17.07.2017 41

Objects that can be manually added to the safety application object
(also several times):
n Safety Basic POU

POU (program or function block) with Basic programming level
n Safety Extended POU

POU (program or function block) with Extended programming
level

n Global variable list (safety)
Declaration of the global variables valid only within the safety
application object

n Safety network variable list (sender)
n Safety network variable list (receiver)

1. Open the properties dialog of the safety controller: Select the
safety controller in the project tree and click “Properties” in
the context menu.

2. Open “Access control” tab.
3. Open the cells in the “Modify” and “Remove” columns of the

“Everyone” user group by double clicking, select “Deny” for
each and confirm with “OK” .

4. Open the cells in the “Modify” and “Remove” columns of the
“Safety” and “Safety.ExtendedLevel” user groups by double
clicking, select “Allow” for each and confirm with “OK” .

Further procedure for safety
project with user management tem-
plate

Software development with CODESYS Safety
Setting up a safety project > Setting up the safety application

17.07.201742

Fig. 14: Dialog: Properties of the S-PLC, "Access Control" tab

5.2.3 Setting up user management in the project
In CODESYS Safety, a safety user configuration is integrated for a
project with safety application. The project manager can use this
safety user configuration for his project or create his own user
management.

The project manager must already decide at the
beginning of the creation of the new project in the
“New project” dialog whether he would like to
create an “Empty project” without user configura-
tion or an “Empty safety project” with safety user
configuration (see Ä Chapter 5.2.2 “Setting up the
safety application” on page 38). If an “Empty
project” is created, i.e. a project without safety
user configuration, then the project manager must
create a user management for the safety project
himself (see CODESYS online help).

The rights assignment for the user management is
located in the “Project” menu (“User
management” and then “Rights”).

Software development with CODESYS Safety
Setting up a safety project > Setting up user management in the project

17.07.2017 43

Every user belongs automatically to the
“Everyone” group.

Settings the safety user configuration
This user management already contains the following settings:
User groups
n “Owner”
n “Safety”
n “Safety.ExtendedLevel”
n “Everyone”

Users
n “Owner” belongs to the “Owner” group
n “saf” belongs to the “Safety” group
n “ext” belongs to the “Safety.ExtendedLevel” and “Safety”

groups.
The preset users do not have a password yet. The “Owner” group
already includes the “Owner” users, but still without a password.
The “Owner” user can assign corresponding users to the "Safety",
"Safety.ExtendedLevel", and "Owner" user groups in the menu
“Project è Project settings è Users and groups”, and issue pass-
words to the users.
The “Owner” user can define new user groups. A new user group
initially has the rights of the “Everyone” user group of the Safety
User Configuration. Through the assignment of a new group to
other, already existing user groups (e.g. “Safety” ,
“Safety.ExtendedLevel”), the new group receives the access rights
of the group to which it is assigned.

The project manager must issue a suitable, safe
password to the "Owner" user, in order to ensure
the access protection of the project.

1. Open the “Project” menu.
2. Select “Project settings” .
3. Select “Users and groups” In the “Project settings” dialog.
4. Select owner in the “Users” tab.
5. Click the “Edit” button.
6. In the “Edit user” dialog window, enter the old password, the

new password and the password confirmation
7. Click “OK” .

Password definition

Software development with CODESYS Safety
Setting up a safety project > Setting up user management in the project

17.07.201744

Refer to the CODESYS standard online help for further information
on the assignment of passwords.
The rights to commands, users and groups, object types and
project objects are specified as follows in the user management,
but can be changed at any time by members of the Owner group.

Rights assignment of the Safety User Configuration
n The “Owner” group possesses all rights.
n The “Safety” group does not have

– Permission to create a “Safety extended POU”
– Permission to create a “Safety external POU”
– Permission to “Execute” the “Safety FBD: Insert return”

command
– Permission to “Execute” the “Safety FBD: Insert jump”

command
– Permission to “Execute” user management “Commands” .
– Permission to “Edit” the “Users and groups” .

n The “Safety Extended.Level” group does not have
– Permission to “Execute” user management “Commands” .
– Permission to “Edit” the “Users and groups” .

n The “Everyone” group does not have
– Permission to execute the “Commands” in the “Safety”

category
– The “Rights” to “Generate” the safety object types.
– Permission to “Execute” user management “Commands” .
– Permission to “Edit” the “Users and groups” .

The developer must be a member of the “Safety.ExtendedLevel”
user group in order to insert a “Safety extended POU” .
After inserting a safety controller or the Safety Application object,
the change rights for the Safety application object are to be explic-
itly configured in the “Properties” dialog of the Safety Application
object on the “Access control” tab as follows:
For detailed instructions, see Ä “Further procedure for safety
project with user management template” on page 42.
n + for Safety
n + for Safety.ExtendedLevel
n - for Everyone
After inserting a Safety Extended POU, the developer must make
appropriate settings on the “Access control” tab in the Properties
dialog of the Safety Extended POU to explicitly deny the “Safety”
user group the right to “Edit” and “Remove” the Extended POU, if
the Extended POU is to be edited and removed only by members
of the “Safety.ExtendedLevel” user group.

Notes for the development of a
safety application with the Safety
User Configuration

Software development with CODESYS Safety
Setting up a safety project > Setting up user management in the project

17.07.2017 45

If a new project is created as an “Empty project” , then the project
manager must create a suitable user management for the safety
application of the project. Refer to the Standard CODESYS online
help for the exact procedure and detailed information on the crea-
tion of this user management in the project.
In order to facilitate the selection of the safety-specific commands
and object types for the developer, Safety is placed before the
commands and object types that are relevant for the “Safety”
developer in the rights assignment.

If the developer does not have the rights for a par-
ticular operation, he can login during the operation
using a user name with more rights. (Activation of
the “User management è Logon user” command
in the “Project” menu)

5.2.4 Setting up the admin password on the controller
The boot application can be protected against unauthorized writing
accesses with a admin password (administrator password).
CODESYS Safety has a default password. After each opening of
the project the user must authorize himself with the admin pass-
word before the first writing access to the boot application. It
remains valid in the development system until the project is closed.
For detailed information, see Ä Chapter 12.1.3 “Protection of the
safety controller against write access” on page 222.

5.2.5 Access protection with link to source control
If a source control is used, then a user management corresponding
to the user management in the project must also be set up in the
source control.

5.3 Device administration

If device descriptions were installed with standard
CODESYS without a safety extension, then they
cannot be used in CODESYS Safety. The respec-
tive device descriptions must be reinstalled after
CODESYS Safety is installed in order for them to
be used in CODESYS Safety.

Safe devices are managed, installed, and uninstalled in a similar
way to standard devices in the “Device Repository”
(“Tools” menu).

Creation of a new project without
Safety User Configuration

Software development with CODESYS Safety
Device administration

17.07.201746

For detailed information refer to the CODESYS Standard online
help.

Fig. 15: Device repository

The Device Repository can be selected and opened in the “Tools”
menu.

n Safety PLCs: In the category “PLCs” , subcategory
“Safety PLCs”

n Logical devices of the safe field devices: Depending on the
respective fieldbus in a subcategory of their own (for example,

“Safe modules”) or in the physical devices.
n Physical devices for safe field devices are only explicitly listed

if they are not installed as modules or submodules as part of
the field device. They are not listed in their own subcategories.

n Logical devices of the standard field devices: In the category
“Logical devices” , subcategory “Generated logical devices”

n Logical devices for data exchange with the standard controller:
In the category “Logical devices” , subcategory “Logical
exchange devices”

The devices relevant for CODESYS
Safety can be found here in the
Device Repository.

Software development with CODESYS Safety
Device administration

17.07.2017 47

n Logical devices of the safe field devices: Depending on the
respective fieldbus, in a subcategory of the “Fieldbuses” cate-
gory

n Logical devices of the standard field devices: In the category
“Logical devices” , subcategory “Generated logical devices”

n Logical devices for data exchange with the standard controller:
In the category “Logical devices” , subcategory “Logical
exchange devices”

For detailed information about the logical I/Os, refer to Ä Chapter
5.5.4.2.1 “Overview of logical I/Os” on page 60.
Safe field devices that have been installed in the device repository
can be inserted into the project tree on a standard page like any
installed device.
The fail-safe parameters of the fail-safe field devices are edited in
the respective logical I/Os (see Ä Chapter 5.5.4.2.3.2 “Safe
parameterization and safe configuration ” on page 72). The
standard field devices and standard parameters of the fail-safe
devices are parameterized as in CODESYS Standard.

5.4 Libraries
Safety libraries with pre-certified function blocks are provided to the
developer for programming with CODESYS Safety Safety. The fol-
lowing libraries are part of the CODESYS Safety product:
n “SafetyPLCopen”
n “SafetyStandard”

These libraries are automatically part of the safety application. An
installation is not necessary.
Depending on the support of safety fieldbuses and safe cross-com-
munication by the safety controller, more fieldbus-specific libraries
may be available (see Ä Chapter 14 “Fieldbuses and network vari-
ables” on page 247).
If the device manufacturer should make further libraries available,
these will likewise be installed automatically.
These libraries are managed as in CODESYS standard (see online
help).
More precise description of the safety libraries are found in the
CODESYS Safety online help.
The version list of the library function blocks and the safety notes
that must be considered for the library function blocks are found in
Ä Chapter 15 “Predefined function blocks” on page 267.

The logical devices relevant for
CODESYS Safety can be found
here in the “Add logical device”
dialog:

Software development with CODESYS Safety
Libraries

17.07.201748

5.5 Project structure
5.5.1 Insertion of a safety controller into the project tree

The safety controller is represented in the project tree as a child
node of the assigned standard controller.
Precisely one application (in this case SafetyApp) is located under
the safety controller. Below that are all the safety objects belonging
to a safety application.

Fig. 16: Example of a project tree with standard and safety applica-
tion

Refer to the Standard CODESYS online help for the part of the
project tree that contains the objects of the default application.

5.5.2 Safety controller
In the case of the "parent-child" controller topology the safety PLC
is attached below the standard controller. This is done by selecting
the main controller and activating the “Insert device” context menu
command with selection of the safety controller.
After the insertion of the safety controller, the “Safety logic” logical
node point, the “SafetyApp” safety application object, the “Safety
task” task object, the “Library Manager” , and the “Logical I/Os”
node point are always inserted automatically with it.

Adding the safety controller

Software development with CODESYS Safety
Project structure > Safety controller

17.07.2017 49

CAUTION!
Immediately after inserting the safety controller, the
developer must explicitly configure the change
rights in the “Properties” dialog on the “Access
control” tab as follows so that only authorized per-
sons can edit the new device object:
– + for Safety
– + for Safety.ExtendedLevel
– - for Everyone
(see Ä “Further procedure for safety project with
user management template” on page 42)

The safety controller can be updated to a newer version of the
device description with the “Update device” context menu com-
mand. Libraries may possibly be replaced by newer versions.

A safety controller attached in the project tree has a Properties
dialog with the “Common” and “Access control” tabs. The Proper-
ties dialog is opened by selecting the safety controller in the project
tree and activating the “Properties” context menu command.

Fig. 17: Editor of the safety controller, 'Safety Online Information'
tab

The device editor of a safety controller contains the following tabs:
n “Communication”

For a description, see Ä Chapter 7.2.2 “Connection setup”
on page 149.

n “Log”
For a description, see Ä Chapter 12.3.3 “Log: Diagnosis of
system and runtime errors” on page 227.

Object properties of the safety con-
troller

Safety PLC editor

Software development with CODESYS Safety
Project structure > Safety controller

17.07.201750

n “Safety Online Information”
This tab contains safety-specific information and safety con-
troller commands:
See Ä “Safety Online Information” on page 230

n “Status”
See Ä Chapter 12.3.4 “Status: Communication diagnosis”
on page 229

n “Information”
Display of general information (see CODESYS online help)

5.5.3 Safety Logic
The “Safety Logic” logical node point exists for the standard
controller for reasons of symmetry. It has no meaning in the safety
controller.
The “Safety Logic” logical node point is inserted automatically into
the project tree with the safety controller. There can only be pre-
cisely one “Safety Logic” node below a safety controller. Only a
“safety application” can be added to it as an object.
Safety Logic has a Properties dialog with the “Common” and
“Access Control” tabs. The Properties dialog is opened by
selecting “Safety Logic” in the project tree and activating the
“Properties… ” context menu command.
Safety Logic cannot be opened by any editor.

5.5.4 Safety application
5.5.4.1 Safety application object

The project tree is displayed in the device window (“Devices” in
the “View” menu).
The objects relevant for the safety controller and its programming
are located below the safety controller. Directly below them is
always the symbolic node point “Safety logic” . Under each
“Safety logic” there can only ever be one safety application object

 “SafetyApp” (default name), which can contain the following
safety objects:

Fig. 18: safety application object with objects

Structure of the project tree of the
safety application

Software development with CODESYS Safety
Project structure > Safety application

17.07.2017 51

The following objects must be present precisely one time in a
safety application object:
n Library manager
n Safety task
n Logical I/Os

The safety application object is added to the project tree:
n Automatically when the safety controller is added

or
n Manually by selecting the “Safety logic” logical node point and

the “Add object” context menu command with selection
“Safety application”

In the Properties dialog (selection of the “Safety application” object
and activation of the “Properties” command) a name can be edited
for the safety application object on the “Common” tab and a com-
ment can be edited for it on the “Safety” tab (see Fig. 20).
If the “Safety application” object is added manually, then a name
and comment for the safety application object can be edited in the
dialog which opens when adding it.

Adding the safety application
object

Software development with CODESYS Safety
Project structure > Safety application

17.07.201752

Fig. 19: Dialog when manual adding the safety application object
with the default name "SafetyApp"

The Properties dialog of the safety application
object and all objects of the safety application
object has the “Common” tab (with name, type of
object and editor with which the object is opened)
and “Access control” tab (access rights of the user
groups for the object).

Additional, object-specific tabs are written with the
individual objects.

The Properties dialog is opened by selecting the object in the
project tree and activating the “Properties” context menu com-
mand.

Object properties of the safety
application object

Software development with CODESYS Safety
Project structure > Safety application

17.07.2017 53

Fig. 20: Dialog 'Properties of the safety application object', 'Safety'
tab

Pin CRC
The Pin CRC is a CRC for all objects of the safety
application including the library blocks employed.

Software development with CODESYS Safety
Project structure > Safety application

17.07.201754

CRC of object
Contrary to the Pin CRC, the CRC for the indi-
vidual objects of the safety application identifies
the object contents together with the object ver-
sion. The CRC is of importance if individual objects
of a safety application are reused in another appli-
cation.

The Safety tab contains:
n Information

– “ Safety CRC”
Information about the checksum of the safety application
object

– “Safety CRC (CNF)” (if aspect “Safe application
parameters” available, see Ä “Editor of the safety applica-
tion object with object list” on page 56)
Information about the checksum of the configuration

– “Safety CRC (MAP)” (if aspect “Safe application
parameters” available, see Ä “Editor of the safety applica-
tion object with object list” on page 56)
Information about the checksum of the mapping

– “Version” (editable)
The version can be freely assigned by the developer and
ensures that the version of the object is easily recognizable
in the object list.

– “Comment” (editable)
– “Execution version” (selectable, if necessary)

Compatibility between (accepted) boot application and run-
time system is monitored with the aid of the execution ver-
sion.

n Adjustable warnings and limitations that are checked by the
Safety Checker (for automatically checked programming guide-
lines, see Ä Chapter 9.3.3 “Automatic checking of the pro-
gramming guidelines” on page 183)

The execution version is part of the acceptance of
the safety application

Execution version: As a rule the developer should always select
the latest execution version.
For more information about the execution version, see Ä Chapter
11.3 “Updating the firmware and execution version” on page 212.

Warnings and errors generated during the transla-
tion of the safety application by the Safety Checker
are displayed in the message window.

Software development with CODESYS Safety
Project structure > Safety application

17.07.2017 55

Warnings and limitations of the “Safety” ab with their default
values:
n “Handle warnings as errors” : not active

The application cannot be loaded if warnings are treated as
errors.

n “Warn about object comment missing for application and
POUs” : active
Considers comment and version

n “Warning about unused objects” : active
n “Warn about unused variables or labels” : active
n “Warn about out-commented content” : active
n “Number of significant characters in identifier” : 20

A warning is given if the first 20 characters of two identifiers are
the same.

n “Maximum number of declarations per object” : 50
n “Maximum number of networks per POU” : 50
n “Maximum number of calls per network” : 20
For detailed information on the warnings and limits, see
Ä “Optional automatically checked programming guidelines”
on page 106.

The editor is opened by selecting the “Safety application” object
and activating the “Edit object” context menu command.

The comparison editor, which displays the differ-
ences in the pin identifications and the object lists
of the pins of both applications, can be opened in
the project comparison by double-clicking the
safety application object.

Editor of the safety application
object with object list

Software development with CODESYS Safety
Project structure > Safety application

17.07.201756

Fig. 21: Editor of the safety application object with object list

Tabs of the editor of the safety application object
n Objects
n Devices
n Optional: Safe application parameters

The optional “Application parameters” tab is device
dependent.

The Application Editor with the “Objects” and “Devices” tabs con-
tains the following information:
n Pin information or, if the application has been changed: “In

work”
n Current CODESYS Safety version
n “Current pin” of the safety application, consists of:

– “Name”
– “CRC” (pin checksum)

The CRC is created for the entire pinned application.
– “Revision”
– “Last change”

For detailed information about the pin information, see Ä Chapter
8 “Pinning the software” on page 173.

Software development with CODESYS Safety
Project structure > Safety application

17.07.2017 57

The “Objects” tab of the editor of the safety appli-
cation object is the object list!

It indicates which objects have been changed
since the last pinning.

Comparison view ("Objects" tab) shows the following information:
n Listing of the objects belonging to the safety application with

– “Line”
Sequential numbers of the entries

– “Type”
Object type (see Ä Table 3 “Displayed values for type and
name in the object list (depending on the type of object)”
on page 58)

– “Name”
Name of the object

– “Version” and “CRC”
Version and checksum of the object in the current project
(project status)

– “Version” and “CRC”
Version and checksum of the last-pinned object

The object list also contains entries for all safety
objects from the libraries which the application
integrates. Only those referenced from the objects
of the application are included. However, this also
includes objects from the libraries that are not
called from the user code, but from the system
code, in particular from the I/O drivers.

Table 3: Displayed values for type and name in the object list
(depending on the type of object)
Object type Type Name

Application APP Name of the application
object

Task TASK Name of the task object

POU program PRG Name of the program
POU

POU function block FB Name of the POU object
of the function block

Global variable list GVL Name of the GVL object

I/O mapping MAP Name of the logical
device object/application
parameter

Objects

Software development with CODESYS Safety
Project structure > Safety application

17.07.201758

Object type Type Name

Safe configuration CNF Name of the logical
device object/application
parameter

Safe parameterization PAR Name of the logical
device object

In addition, the comparison view contains the “Clear pin” and “Pin
project” buttons (see Ä Chapter 9.3.3 “Automatic checking of the
programming guidelines” on page 183).

Fig. 22: Editor of the safety application object with device list

The 'Devices' tab displays the following information:
n list of the field devices belonging to the safety application and

the safety controller to which the safety application belongs, in
each case with the associated information about the descrip-
tion files.
– “Line”

Sequential numbers of the entries
– “TYPE”

Type of device (see Ä Table 4 “Displayed values for type in
the device list” on page 60)

– “Name”
Name of the device in the project tree

– “Identification”
Device-specific information for identification

– “Creator”
Information about the creator of the device-specific infor-
mation

Devices

Software development with CODESYS Safety
Project structure > Safety application

17.07.2017 59

Table 4: Displayed values for type in the device list
Type Description

SAFEPLC Safety controller to which the
application is assigned

SAFEDEV Safe logical device of the appli-
cation

STDDEV Standard logical device of the
application

XVARDEV Standard logical device for vari-
able exchange

The “Refresh list” button is for updating the device list if the
devices (logical I/Os) or the safety controller in the project tree
have changed with the editor open.

5.5.4.2 Logical I/Os
5.5.4.2.1 Overview of logical I/Os

The logical I/Os serve the exchange of data between the standard
and safety controllers. Two types of data can be exchanged: global
variables and I/O data. The safety controller itself has no I/O data.
These must be configured in the standard controller and then
exchanged with the safety controller as logical I/Os. If an I/O
module with safe I/Os is inserted in the controller configuration in
CODESYS, then a matching logical I/O is automatically inserted in
the safety controller (same name as the I/O module on the
standard side). This logical I/O contains all safe I/O channels as
well as the safety parameters of the module, so that all safety-rele-
vant information can be found under the safety application.

Types of logical I/Os
n logical I/Os of safe field devices

(see Ä Chapter 5.5.4.2.2.1 “Logical I/O of a safe physical
device” on page 63)

n logical I/Os of standard field devices
(see Ä Chapter 5.5.4.2.2.2 “Logical I/O of a standard field
device” on page 64)

n logical I/Os of global variables for exchange with the standard
controller of the project (“Logical exchange devices”)
(see Ä Chapter 5.5.4.2.2.3 “Logical I/O for data exchange with
the main controller (standard controller)” on page 67)

The logical I/Os of the safety application are linked to the default
application with physical devices or “GVLs for logical exchange”
(special object on standard side). This means that there is pre-
cisely one logical I/O in the safety application for each physical
device whose input/output signals are processed in the safety
application. Likewise, precisely one logical I/O exists under the
safety application for each GVL for the logical exchange of the
standard controller. The assignment is variable.

Principle of the logical I/Os

Software development with CODESYS Safety
Project structure > Safety application

17.07.201760

The fail-safe parameters of a device whose inputs/
outputs are processed in the safety application can
be edited only in the appropriate logical I/O in the
safety application.

The descriptions of the logical I/Os are managed in
the “Logical devices” category of the Device
Repository.

For a better overview, folders can be added to the
project tree under “Logical I/O” in order to group
the logical I/Os.

The concept of the logical I/Os gives rise to the following advan-
tages for the development and verification of a CODESYS Safety
safety application:
n The parameterization of the safe parameters of field devices

(e.g. F-parameters in PROFIsafe) takes place only into the log-
ical I/Os of the safety application. If safety user management is
set up, this parameterization can only be done by members of
the Safety user group.

n Changed assignments of physical field devices and GVLs for
logical exchange do not change the safety application, since
the changes of assignments take place under the main applica-
tion (default application) and become effective by downloading
to the main controller.

n An pre-verified and accepted CODESYS Safety safety applica-
tion can be detached from the original project and integrated
completely in a different project without this new safety applica-
tion having to be verified again. When doing this suitable field
devices and GVLs for logical exchange must be reassigned to
the logical I/Os of the safety application.

The logical I/Os are assigned depending on the name of the appli-
cation and the logical I/O object. This gives rise to the following
notes:

Advantages of the logical I/Os

Notes on the logical I/Os

Software development with CODESYS Safety
Project structure > Safety application

17.07.2017 61

n If the name of a logical I/O is changed, then the name of the
physical device or the GVL for logical exchange must be auto-
matically tracked so that it does not have to be reassigned to
the logical I/O.

n The renaming (except in the case of "default assignment") or
relocation of field devices in the device tree or of GVLs for log-
ical exchange in the main application does not change the
assignment to the logical I/O in any way. The safety application
is changed automatically when it is renamed: The assigned
logical I/O is renamed the same as the field device.
If the field device is shifted into a different parallel controller,
then the link is dissolved and the field device must be reas-
signed to the logical I/O of the safety application.

n The deletion of the field device from the device tree or of the
GVL for logical exchange from the default application means
that the assigned logical I/O can no longer be mapped to any-
thing (no longer supplied).

n The deletion of the logical I/O object means that fail-safe set-
tings are no longer mapped to the field device or that the "from
Safety" variables in the GVL for logical exchange are no longer
supplied.

n If a different logical I/O object is given the old name of a
renamed or deleted logical I/O object, then from now on its set-
tings are mapped to the assigned field device or its variable
values are exchanged with the exchange GVL. The assign-
ment is thus indirectly changed.
If a logical I/O has been deleted and a new logical I/O is
inserted with the name of the deleted logical I/O, then the
assignment is active again.

n If a physical I/O object that is linked with a logical I/O object is
copied, then the logical I/O object is also copied together with
its data.

Unless otherwise defined, a "0" will be returned for values that
cannot be updated. For more information, see Ä Chapter 7.8
“Coordination with the Main Controller” on page 170.

The Properties dialog of all logical I/Os contains the “Safety” tab in
addition to the “Common” and “Access control” tabs (see Fig. 23).
For information about the “Safety” tab, see Ä Chapter 5.5.4.1
“Safety application object” on page 51.

Replacement values

Object properties

Software development with CODESYS Safety
Project structure > Safety application

17.07.201762

Fig. 23: Dialog: Properties of logical I/Os, 'Safety' tab

5.5.4.2.2 Usage types of the logical I/Os
5.5.4.2.2.1 Logical I/O of a safe physical device

These logical I/Os are used for the exchange of safety-related I/Os
between the safety PLC and the standard PLC.

Information about linking safe 1oo1 and 1oo2 input
devices with the safety application and what you
should pay attention to when doing so can be
found in the section Ä Chapter 6.4.2 “Linking dig-
ital 1oo1 and 1oo2 Input Devices” on page 132.

For this exchange the safe field device must first be inserted under
the standard controller as in CODESYS.
1. Select the corresponding fieldbus slave below the standard

PLC in the project tree.
2. Activate the “Insert device” context menu command.
3. In the dialog that opens, select the desired safe field device

from the subcategory “Safe modules” in the “Fieldbuses”
category.

4. Click “Close” .

Adding a safe field device below
the standard PLC

Software development with CODESYS Safety
Project structure > Safety application

17.07.2017 63

When inserting a safe field device under the
standard controller, the corresponding logical I/O is
automatically inserted in the “Logical I/Os” node of
the safety application. Requirement: Only one
safety controller exists below the standard con-
troller below the safe field device.

CAUTION!
The type consistency of the I/O channels is only
ensured
– if the application revision levels on the safety

controller and on the main controller corre-
spond to the revision level of the same translat-
able project
and

– if the field devices in the project correspond to
the field devices in the machine. – Depending
on the bus system a mismatch is recognized
automatically here (e.g. with PROFIBUS).

5.5.4.2.2.2 Logical I/O of a standard field device
These logical I/Os serve the exchange of I/O data between the
standard field devices and the safety controller.
If standard I/Os are used in the safety application, then these data
are not safe!
First the desired standard field device is inserted under the
standard controller, depending on the device. The procedure corre-
sponds to CODESYS Standard.

In the current version of CODESYS Safety only
PROFINET and PROFIBUS devices can be inte-
grated in the safety application as standard
devices.

Subsequently, the appropriate logical I/O ("generated logical
device") must be inserted manually under the safety application
object:

1. Select the “Logical I/Os” node point of the safety application
object in the project tree

2. Activate the “Add Object...” context menu command with
selection “Logical Device…”

Type consistency of the I/O chan-
nels

Addition of the "generated logical
device"

Software development with CODESYS Safety
Project structure > Safety application

17.07.201764

3. In the “Add Logical Device” dialog (see Fig. 24) in the
“Logical Devices” category, select the corresponding logical
I/O in the “Generated logical devices” subcategory

4. Actuate the “Open” button.

Fig. 24: 'Add Logical Device' dialog

For editing the variables, see Ä “I/O mapping” on page 70

After successful insertion of the standard field device under the
standard controller and the corresponding logical I/Os under the
safety controller, they must be "linked" to one another in order to
be able to exchange I/O data.
1. Select standard field device in the project tree
2. Activate the “Edit Object” context menu command
3. Open the “(...) I/O Mapping” tab (in case of Profibus)

Connection of a field device to the
logical I/O

Assignment of a field device to the
logical I/O

Software development with CODESYS Safety
Project structure > Safety application

17.07.2017 65

4. Click on the “Logical I/O mapping” combo box
5. Select the appropriate logical I/O from the list that opens

(see Fig. 25)

Fig. 25: Example: '(…) I/O Mapping' standard device tab with
opened "Logical I/O mapping" combo box

Among the logical I/Os, only those that have not already been
mapped to other devices or GVLs for logical exchange can be
selected. The system only accepts the selection of a logical I/O
that has the same device description as the physical device.
A function block of the type NonSafeIO is generated as a stack
instance.

NOTICE!
The type consistency of the I/O channels is only
ensured
– if the application revision levels on the safety

controller and on the main controller corre-
spond to the revision level of the same translat-
able project
and

– if the field devices in the project correspond to
the field devices in the machine. - depending
on the bus system a mismatch is recognized
automatically here (e.g. with PROFIBUS).

Type consistency of the I/O chan-
nels

Software development with CODESYS Safety
Project structure > Safety application

17.07.201766

5.5.4.2.2.3 Logical I/O for data exchange with the main controller (standard controller)
The exchange of data between the safety controller and standard
controller takes place via variables, which are defined in the logical
I/Os “Logical exchange device” . In addition, a “GVL for logical
exchange” is created on the standard side and connected with the
corresponding “Logical exchange device” .
These data are used as inputs/outputs in the safety controller; in
the default application they are available as global variables

The data flow between two variables is clear. This
means that the same variable from one application
cannot be exchanged with two variables of the
other application.

1. Select the default application object in the project tree
2. Activate the “Insert object” context menu command with

selection “GVL for logical exchange” .
3. A name can be edited for the GVL in the “Add GVL for

logical exchange” dialog. The default name is
“GVL_for_logical_exchange” .

4. Click “Open”

1. Select the “Logical I/Os” node of the safety application object
in the project tree.

2. Context menu “Add object ” activate by selecting “Logical
device”

3. In the “Add logical device” dialog (see Fig. 26) in the
“Logical devices” category, select the desired logical I/O in
the “Logical exchange device” subcategory

4. Click “Open” .

For editing the exchange variables, see Ä “I/O mapping”
on page 70.

Addition of the "GVL for logical
exchange"

Addition of the "logical exchange
device"

Software development with CODESYS Safety
Project structure > Safety application

17.07.2017 67

Fig. 26: Dialog box 'Add Logical Device'

When selecting the “Logical exchange device” the following are
defined for the individual variables:
n Exchange direction: IN or OUT

IN: From the default application to the safety application
OUT: From the safety application to the default application

n Data type: BYTE, DINT, INT or WORD
A function block of the type NonSafeIO is generated as a stack
instance.

The exchange variables can be edited only in the
logical IO. Variables cannot be entered or changed
in the GVL for logical exchange.

Software development with CODESYS Safety
Project structure > Safety application

17.07.201768

Only data whose variables possess a standard
data type can be exchanged. Variables of a data
type with the prefix SAFE cannot be exchanged
between a safety controller and a standard con-
troller.

1. Select GVL for logical exchange of the default application in
the project tree

2. Activate the “Edit object” context menu command.
3. Click the “Logical exchange mapping” combo box
4. Select the appropriate logical exchange object from the list

that opens (see Fig. 27)

Fig. 27: Editor of the GVL for logical exchange with opened combo
box

All logical exchange objects that have not yet been mapped are
available in the combo box.
If a logical exchange device is selected, then the variables are
implicitly updated.
If changes are made in the connected logical exchange device,
then the “Refresh” button in the GVL for logical exchange must be
actuated in order to update the variable list.
An existing connection is terminated by the clicking the “Reset”
button.

A change of the variable exchange can only become active by
downloading the safety application and the default application
again.

Connection of the "GVL for logical
exchange" to the "logical exchange
device"

Notes on the exchange of data
between the standard and safety
controllers

Software development with CODESYS Safety
Project structure > Safety application

17.07.2017 69

Replacement values are used for variable exchange as long as the
application has not been terminated but no current values can
presently be exchanged, Ä “Interruption by the main controller ”
on page 171.

NOTICE!
The type consistency of the I/O channels is only
ensured
– if the application revision levels on the safety

controller and on the main controller corre-
spond to the revision level of the same translat-
able project

5.5.4.2.3 Editor of the logical I/Os
5.5.4.2.3.1 Information and I/O mapping

The editor of all logical I/Os contains the “Information” tab (see
Fig. 28), which contains detailed information and, if necessary, a
picture of the respective logical I/O.
Listed as information: name, vendor, categories, type, ID, version,
order number and description.
Possible categories
n F-Modules
n Generated logical devices
n Logical exchange device

Fig. 28: Information tab of a logical I/O

The variables that are used for the safety application to access the
I/Os are defined in the “I/O mapping” tab.

In CODESYS Safety, I/O channels can be mapped
to new variables only, not to existing variables.

Replacement values

Type consistency of the I/O chan-
nels

Information

I/O mapping

Software development with CODESYS Safety
Project structure > Safety application

17.07.201770

Variables that are mapped to input channels contain the corre-
sponding input signals from field devices and can thus be read.
Variables that are mapped to output channels can be written and
set output signals in field devices.
An implicit global variable with the corresponding name and the
data type specified in the “Type” column are created in the safety
application for each input or output channel of an I/O module that a
variable has been assigned.
Sections of the I/O mapping tab
n List of the variables of the I/O mapping with: variable (name),

channel (input and output), type, unit, and description
The information in the “Channel” , “Type” (IEC data type) ,
“Unit” , and “Description” columns is defined in the device
description file and cannot be modified.

n Physical I/O: Display of the standard application object that is
connected to this logical I/O

n Instances: List of implicit instances. These are available to the
safety application as global variables. (see Ä Chapter 5.5.4.2.4
“Use of logical I/Os in the project” on page 75)

Editing the variables
The mapping variables are edited and displayed in the “I/O
mapping” tab of the logical I/O. To edit a variable, you must
double-click the respective line to open it.
All mapping variables that are entered in the table are deleted
when the “Reset Mapping” is clicked (the mapping of the physical
device on the logical I/O is reset).

Fig. 29: Tab 'I/O mapping' of the logical I/O of a safe field device

Fig. 30: Tab 'I/O mapping' of a logical I/O, byte type with bit access

Software development with CODESYS Safety
Project structure > Safety application

17.07.2017 71

Fig. 31: Tab 'I/O mapping' of a logical I/O, WORD type

Changes in the “I/O mapping” tab are marked in
red. Only the last change is marked. All change
markings are removed when the editor is closed.

For using the variables defined in “I/O mapping” in the project,
refer to Ä Chapter 5.5.4.2.4 “Use of logical I/Os in the project”
on page 75.

The editor of the logical I/Os of standard devices
has no “Safe configuration” or “Safe device
parameterization” tab. The configuration and the
device parameterization take place under the
default application as in CODESYS Standard.

If a device is assigned to the safety controller, then
the “I/O mapping” tab of the device editor shows
only this assignment and no longer the channel
mapping to the variables of the main controller.

5.5.4.2.3.2 Safe parameterization and safe configuration
The “Safe parameterization” and “Safe configuration” tabs exist in
the editors of the logical I/Os only in the case of failsafe I/Os.

NOTICE!
The device editor is suitable for the display and
processing of the device parameters of certain
devices. Precise information can be found in the
documentation for the respective device, or can be
obtained from the respective device manufacturer.

Software development with CODESYS Safety
Project structure > Safety application

17.07.201772

CAUTION!
Fieldbus-specific requirements for the setting of
certain parameters are to be considered.

NOTICE!
The user is responsible for ensuring that the
devices are correctly parameterized according to
the device documentation of the respective device
or the respective device manufacturer.

NOTICE!
The device manufacturer must inform the user
about the conditions for the calculation of the
system characteristic values.

The Pin information or “In work” appears in the upper section. The
parameters are listed in tabular form in each case in the adjoining
section.
“Safe parameterization” (see Fig. 32) lists the parameters of the
respective safe device.
“Safe configuration” (see Fig. 33) contains the configuration
parameters for safe communication.

Integer parameters can also be displayed in hexa-
decimal depending on the device description. This
optional setting must be made in the device
description file.

Software development with CODESYS Safety
Project structure > Safety application

17.07.2017 73

Fig. 32: Tab 'Safe parametrization'

Fig. 33: Example: "Safe configuration"

Changes made on the “Safe parametrization” and
“Safe configuration” tabs are marked red. Only the
latest change is marked. All change markings are
removed when the editor is closed.

n For PROFIsafe devices, see Ä Chapter 14.2.2 “PROFIsafe
parameters: F-parameters and i-parameters” on page 254.

n For FSoE devices, see Ä Chapter 14.3.2 “FSoE parameters”
on page 260.

Detailed description of the bus-spe-
cific safe parameters

Software development with CODESYS Safety
Project structure > Safety application

17.07.201774

5.5.4.2.4 Use of logical I/Os in the project
Every mapping variable (channel variables) declared in the “I/O
mapping” of a logical I/O and all generated instances of the logical
I/Os of safe devices and of standard devices are available to the
developer as global variables when programming the safety appli-
cation. In order to be able to use it for the code implementation in a
POU, it must be declared in the declaration part of the POUs as
VAR_EXTERNAL. (For variable declaration, see Ä Chapter 6.3.3.1
“In general about variables” on page 110.)
As an alternative to the explicit declaration, these variables and
instances can be selected in the implementation part of POUs
either in the Input Assistant or in the automatically displayed "Intel-
lisense" selection list.

Variables mapped to an I/O channel can be written
and forced when debugging the program!

5.5.4.3 POUs
POUs (Program Organisation Units) are the programming objects
of CODESYS Safety, which are declared either as programs
(“PROGRAM”) or as function blocks (“FUNCTION_BLOCK”).
Any desired number of POUs can be added to the project tree of
the safety application.
Features of program and function blocks:
n Program

A program cannot be called by other programs, but can call
instances of function blocks.
Programs are called directly by the safety task. The programs
that are called are defined in the “Safety Task” object. Only the
called programs are executed on the controller.

n Function block
Function blocks are always called via an instance that is a copy
of the function block containing the data. Each instance has an
identifier (instance name) and a data structure containing its
input, output and internal variables.
Instances of function blocks can be called in function blocks.
The declaration and use of function blocks takes place as in
Standard CODESYS and is not described any further here.

1. Select “SafetyApp” in the project tree
2. Activate the “Add Object” context menu command with the

selection “Safety Basic-POU” or “Safety Extended-POU”

Addition of a POU

Software development with CODESYS Safety
Project structure > Safety application

17.07.2017 75

3. In the Add “Basic” POU or “Add Extended POU” dialog (see
Fig. 34), enter the name and comment for the POU and
select the POU type “PROGRAM” or “FUNCTION_BLOCK” .

4. In the case that the POU type is “FUNCTION_BLOCK” , the
“PLCopen” “Single Call” checkbox can be set. The POU can
be called several times if this check box is not set.
In the case of the POU type “PROGRAM” the Single call
checkbox is automatically set and cannot be changed.

5. Actuate the “Open” button.

NOTICE!
Commenting on POUs
In accordance with PLCopen, the “Comment” field
for each POU should contain the following informa-
tion:
– Author
– Creation date of the POU
– Release date
– Version
– Version history
– functional description (including I/O parame-

ters)

CAUTION!
In the case of a Safety project with the Safety user
configuration, the developer must make the fol-
lowing settings immediately after the insertion so
that only authorized persons can edit the new
Extended POU: open the “Access control” tab in
the “Properties” dialog and forbid the “Safety”
user group to “Edit” and “Remove” the Extended
POU.

Software development with CODESYS Safety
Project structure > Safety application

17.07.201776

Fig. 34: Example: Dialog for the creation of an Extended POU,
POU type: "FUNCTION_BLOCK"

For POU editor and creation of the program code in POUs, see
Ä Chapter 6.3.2 “POUs” on page 109

Each POU of the safety application has a Properties dialog with
“Common” , “Safety” and “Access control” tabs. The Properties
dialog is opened by selecting the respective POU in the project
tree and activating the “Properties…” context menu command.

Object properties of a POU

Software development with CODESYS Safety
Project structure > Safety application

17.07.2017 77

Fig. 35: Properties dialog for a POU, 'Safety' tab

n “ CRC”
CRC for this POU

n “Version” (editable)
The developer can freely assign the version. The version of the
object can be quickly recognized in the object list of the safety
application object with the aid of the version.

n “Comment” (editable)
n “PLCopen ”

The “Single call” checkbox
– is set automatically in the case of the POU type

“PROGRAM” . The setting cannot be changed
– can be activated in the case of the function block type

“FUNCTION_BLOCK” and can be set or reset.
For details of the POU editor, see Ä Chapter 6.3.2 “POUs”
on page 109

Software development with CODESYS Safety
Project structure > Safety application

17.07.201778

5.5.4.4 Safety Task
There must be precisely one “Safety Task” under the safety
application object in the device tree. This safety task calls the pro-
grams (POUs of the type PROGRAM) of the safety application
object in an editable order. Hence, it defines those programs that
are executed on the controller. The developer defines the program
selection and the order in which they are called. The programs
listed in the editor are the same as the program POUs in the
project tree.

The “Safety Task” object is automatically added under the safety
application object when adding the safety controller.
If the safety task is not automatically added or if it has been
deleted, then the object can be added to the Safety Application
object by means of the “Add Object” context menu command with
the selection “Safety Task” .

The “Safety” tab of the Properties dialog contains the checksum of
the Safety Task object and editable fields for the version and com-
ment for the Safety Task.

Fig. 36: Dialog: Properties of the Safety Task, 'Safety' tab

Addition of the safety task

Object properties of the Safety
Task

Software development with CODESYS Safety
Project structure > Safety application

17.07.2017 79

Fig. 37: Editor: Safety Task

The Task Object editor consists of 3 sections:
n Pin information
n Editable display of the cycle time
n List of the programs with buttons

The developer can change the value of the cycle time. It is entered
in whole ms (milliseconds). A sensible cycle time for the selected
device is preset as the default (20 ms in the example).
The minimum value is used if a value is entered that is smaller
than the permissible value for this safety PLC.
The same applies to the maximum value.
If the cycle time is changed, then the Pin checksum and the
checksum of the Safety Task object also change!

The program list contains all programs (POUs of the type PRO-
GRAM) of the safety application.
The marking in the first column of the program list indicates which
programs are executed. The marked entries in the list can be com-
mented out by deactivating the checkbox in the first column. Pro-
grams of commented-out entries are not executed on the con-
troller. Commenting-outs are cancelled by actuating the button; the
corresponding programs are called by the task.

The “Up” and “Down ” buttons serve to change the order in which
the programs are called:
“Up” : the currently selected program entry is shifted one place
upward in the program list.
“Down” : the currently selected program entry is shifted one place
downward in the program list.
All programs in the list can be marked by actuating the “All” button.
All programs can be deselected by actuating the “None” button.

Safety Task editor

Cycle time

Program list

Software development with CODESYS Safety
Project structure > Safety application

17.07.201780

The last change made to the fields in the program list is marked
red. This colour marking is removed when closing the editor.
Updating the program list:
The program list of the Safety Task object is automatically updated
if changes are made to the project structure in the project tree.
Exception:
If the developer does not possess the rights in the user manage-
ment to edit the Safety Task object of the project, then the program
list of the task object is not updated automatically. In this case the
“Refresh” button can be actuated, but only by a developer who
possesses the rights to edit the Safety Task object.
For the documentation a comment can be entered for each pro-
gram entry in the list.

5.5.4.5 Global Variable List (GVL)
The Safety Global Variable List (GVL) serves the representation,
declaration and editing of globally declared variables which are
valid within the entire safety application. Several GVLs can be
added to a safety application.

A Safety GVL is represented in the project tree with the symbol .
The variables declared in the GVL of the safety application are not
valid project-wide, but only globally within the safety application.

1. Select the “SafetyApp” Safety Application object in the
project tree

2. Select the “Add Object” context menu command with the
selection “Safety Global Variable List”

3. In the “Add Safety Global Variable List” dialog window, enter
the name and optional comment for the GVL.

4. Actuate the “Open” button.

The editor for the declaration of the global variables opens.

The Properties dialog of a GVL contains “Common” , “Safety” and
“Access control” tabs
The “Safety” tab of the Properties dialog (see Fig. 38) contains the
“Safety CRC” (checksum of the GVL) and editable fields for the
version and the comment for the GVL.
The developer can freely assign the version. The version of the
object can be quickly recognized in the object list of the safety
application object with the aid of the version.

Addition of a GVL

GVL object properties

Software development with CODESYS Safety
Project structure > Safety application

17.07.2017 81

Fig. 38: Dialog: Properties of the GVL, 'Safety' tab

Fig. 39: GVL editor

The editor consists of two sections:
n Display of the Pin information (if not pinned: In Work)
n Table for the variable declaration with the columns: line, scope,

name, type, initial value, comment
For the declaration of a global variable, see Ä Chapter 5.6 “Var-
iable declaration” on page 86

Scope for global variables
n VAR_GLOBAL
n VAR_GLOBAL CONSTANT
Data types for global variables
n BOOL
n DINT

Editor of a GVL

Software development with CODESYS Safety
Project structure > Safety application

17.07.201782

n INT
n SAFEBOOL
n SAFEDINT
n SAFEINT
n SAFETIME
n SAFEWORD
n TIME
n WORD

Variables declared in a GVL are available in the
Input Assistant of the safety application under the
"Global Variables" category.

1. Select the GVL of the Safety Application object in the project
tree

2. Activate the “Edit Object ...” context menu command
3. Open the cell to be changed in the editor (see Fig. 39) with a

double click
4. Change the contents of the cell

5.5.4.6 Network variables - Communication between safety controllers
Properties of safety NetVars
n The cross-communication between safety controllers is used

for exchanging safety-related signals.
n Variables of the following type can be exchanged: SAFEBOOL,

SAFEWORD, and SAFEINT.
n If cross-communication was configured using the “Safety

network variable list (sender)” and “Safety network variable list
(receiver)” objects and downloads to safety and main control-
lers were performed, then the communication link is estab-
lished automatically over the main controllers of the safety con-
troller.

n The safety controller always exchanges the variable value that
the variable has at the end of the application cycle. All
exchanged telegrams (variable values and received confirma-
tions) are sent in sync to the application cycle in the output
phase and received in the input phase.

n A sender can send the same variable to several receivers and
it is programmatically and functionally independent of its
receivers. The receivers must register with the sender for
establishing safe communication.

Changing global variables

Software development with CODESYS Safety
Project structure > Safety application

17.07.2017 83

n A configured variable exchange starts automatically, continues
running automatically, and starts again automatically after the
cause for interruption has been removed, when the following
conditions are fulfilled:
– The routing of the main controllers of sender and

receiver(s) runs.
– Safe communication of sender and receiver runs.
– The communication path is fast enough, the cycles times

are short enough, and the watchdog time is long enough.
n The “NetVarReceiver” and “NetVarSender” modules of the

“SafetyNetVar” library are used for cross-communication. In
addition, an instance of the “NetVarSenderStack” module is
generated for each sender/receiver relationship.

1. Insert the “Safety-NVL (sender) ” object into the safety appli-
cation of the sender safety controller.

2. Specify the FSoE address in the editor of the “Safety-NVL
(sender)” object (“Safety address of this variable list” input
field).

3. Insert the “Safety-NVL (receiver) ” object into the safety
application of the receiver safety controller.

4. Select the sender in the editor of the “Safety-NVL (receiver)”
object (“Associated sender” drop-down list).

5. Specify the values in the “Connection ID” and “Watchdog
time” input fields.

For more information, please refer to the online help.

5.5.4.7 Library manager
The libraries that are usable by the safety application are managed
in the library manager. The list of the libraries originates from the
device description of the safety controller, which contains the
safety application with the library manager. All libraries available for
this safety controller are automatically inserted.

The library manager of CODESYS Safety corre-
sponds to the library manager of CODESYS. For
details, please refer to the CODESYS online help.

More precise description of the safety libraries are found in the
CODESYS Safety online help.
The version list of the library function blocks and the safety notes
that must be considered for the library function blocks are found in
Ä Chapter 15 “Predefined function blocks” on page 267.

Instructions for setting up safe
cross-communication

Software development with CODESYS Safety
Project structure > Safety application

17.07.201784

The “Library Manager” object is usually inserted automatically into
the project tree together with the safety controller. This object can
exist only once below a Safety Application object.
It can be added manually by selecting the “SafetyApp” safety
application object in the project tree and executing the
“Add object” “Library Manager” context menu command.

As in CODESYS Standard, the Properties dialog contains the
“Common” , “Access control” , and “Build” tabs.

Fig. 40: Example: Editor of the library manager

The editor consists of the following three sections:
n Library list
n Block list (of a selected library; “safety standard” in the

example)
n Block description (of a block selected in the block list; in the

example: “SF_SR”) with the “Inputs/Outputs” , “Graphic” , and
“Documentation” tabs.

See the CODESYS Standard online help for further details of this
editor.

Addition of the library manager

Object properties

Library manager editor

Software development with CODESYS Safety
Project structure > Safety application

17.07.2017 85

NOTICE!
The Library Manager is not suitable for the verifica-
tion of the library blocks (IEC blocks and external
blocks) used in the safety application during the
verification and the acceptance. The verification of
the execution-relevant statuses must take place
via the comparison view, see Ä Chapter 8 “Pinning
the software” on page 173. For acceptance docu-
mentation, see Ä Chapter 10.1 “Introduction ”
on page 199.

The list of the libraries can change if the safety
controller is updated.

5.6 Variable declaration

Fig. 41: Editor for variable declaration with open context menu

1. Activate the context menu in the variable declaration editor
2. Activate the “Insert Variable Declaration” command in the

menu window
3. Edit or select the scope, name, type, initial value and optional

comment fields in the “Declare Safety variable” dialog.
4. Click “OK” .

Notes on the library manager

Declaring variables

Software development with CODESYS Safety
Variable declaration

17.07.201786

Fig. 42: Dialog 'Declare Safety variable'

Input fields of the "Declare Safety variable" dialog
n Scope
n Name
n Data type
n Initial value
n Comment
Existing declarations can be changed by double-clicking the
respective field in the declaration table.

The “User-defined Types” data type category contains function
blocks of the safety application and the libraries. This category can
be selected in the Input Assistant, which is opened in the dialog
Fig. 42 by clicking the button. In the case of already declared
variables the Input Assistant of the data type is opened as follows:
1. Select the appropriate variable in the declaration window of

the cell type
2. Click in the type drop-down list on the “...” symbol

User-defined data types

Software development with CODESYS Safety
Variable declaration

17.07.2017 87

Software development with CODESYS Safety
Variable declaration

17.07.201788

6 Programming

6.1 Overview of programming
CODESYS Safety supports the developer in the creation of a
standard-compliant safety application through
n the promotion of good programming techniques
n the prohibition of non-safe language features
n the promotion of code comprehensibility
n facilitated testability
n Code documentation procedure
The programming of a safety application takes place in POUs,
GVLs and the task object.
In the POUs the program code is implemented in the IEC 61131-3
FBD language (function block diagram). FBD is characterized by
clarity, ease of recognition of programming errors and clear data
flow.
The user interface and handling of the CODESYS Safety FBD
editor correspond to CODESYS Standard.

The FBD-specific commands of CODESYS Safety
are described with the respective language ele-
ments.

Frequently used symbols:
- Input Assistant: The symbol (ellipsis) identi-
fies a button that opens the “Input Assistant”
dialog window when actuated.

The language subset of FBD is limited according to the Basic and
Extended language subsets defined in PLCopen. The appropriate
selection for the language subset Basic or Extended is defined by
the developer when creating a new POU (program or function
block) (see Ä “Addition of a POU” on page 75).
In the Basic Level a safety application can be implemented and
subsequently verified with relatively low expenditure by linking the
already certified function blocks of the PLCopen library
(“SafetyPLCopen”) and the standard library (“SafetyStandard”).
Extended Level offers the developer additional operators (Boolean,
mathematical and others) and conditional jumps/returns in order to
create more extensive safety applications. They require an accord-
ingly more elaborate verification process following the develop-
ment.

Language subset of safety pro-
gramming with CODESYS Safety

Programming
Overview of programming

17.07.2017 89

When using PLCopen function blocks the plant
restarts following an error state (communication
error) only after actuating Reset. This behavior
must be implemented by the application if the
PLCopen function blocks are not used.

NOTICE!
In order for the CODESYS online functions and
input assistance to work for the safety application,
they must fulfill the standard compiler version as
well as the safety language subset. If a later com-
piler version is used in the project, then additional
limitations may result for the safety application. For
example, there may be new keywords that can no
longer be used as identifiers.
You do not detect a violation of such additional lim-
itations with the “Build è Build” command, but
when you log in for the first time. A corresponding
message appears and login is not possible. For
setting the compiler version, see
Project environment in the standard online help.

Deviations of language subset for
n PLCopen (see Ä Chapter 6.1.2 “Deviations of the language

elements from PLCopen Safety” on page 91)
n Standard CODESYS (see Ä Chapter 6.1.4 “Differences of pro-

gramming in standard CODESYS” on page 93)
n IEC 61131-3 (see Ä Chapter 6.1.3 “IEC 61131-3 conformity”

on page 91)

6.1.1 Language elements
The following objects and their elements generally serve the imple-
mentation of the program code of a safety application:
n GVLs

– Global variables
n NVLs

– Network variables
n POUs

– Networks
– Variables
– Operators
– Assignments
– Jumps/Returns
– FB calls

n Task
– Program list

Programming
Overview of programming > Language elements

17.07.201790

ms-its:codesys.chm::/_cds_dlg_project_environment_compiler_version.htm

n Logical I/Os
– Mapping variables

n Function blocks of the safety libraries which are referred to in
the library manager,

6.1.2 Deviations of the language elements from PLCopen Safety
PLCopen [N2.1.1] Deviation in Basic/Extended POUs

Standard FBs allowed Available only as safety variants (SF_TON instead of TON, etc.)

REAL data type intended REAL data type is not supported

(SAFE)TIME in Extended Level:
Only as internal variable or con-
stant input for FBs

In Extended Level: No restriction for declarations; also possible as
data type for physical inputs and outputs

(SAFE)WORD in Extended Level:
Only as internal variable or as
output for diagnostic purposes

In Extended Level and GVLs: No restriction for declarations; also pos-
sible as data type for physical inputs and outputs

No (SAFE)BYTE, (SAFE)DWORD In Extended Level and GVLs: No restriction for declarations; also pos-
sible as data type for physical inputs and outputs

No VAR_EXTERNAL in Basic
Level

In programs: VAR_EXTERNAL allowed for channel variables and
stack instances
VAR_EXTERNAL CONSTANT allowed for global constants

At least SAFEBOOL SAFE variants for all supported data types

LD Not supported

No multiple call of the same FB
instance

Only in the case of FBs with call-once qualification (this includes all
PLCopen FBs); implicit call-once inheritance: FB with call-once
instance is itself call-once.
Instances of other FBs can be called multiple or zero times.

No FB declaration features
according to [N1.1.3-Tab.33]
- No VAR_EXTERNAL of global
FBs

In Basic Level programs: Permitted for stack instances
In Extended Level programs: Permitted for non-PLCopen FBs (more
precisely: for FBs without a call-once qualifier)

No FB declaration features
according to [N1.1.3-Tab.33]
- No VAR_EXTERNAL CON-
STANT in an FB POU

Permitted for global constants (VAR_GLOBAL CONSTANT)

6.1.3 IEC 61131-3 conformity
In CODESYS Safety, a few extensions of IEC 61131-3 are imple-
mented for the programming of safety controllers. In detail these
are:

Summary of the extensions to IEC
61131-3

Programming
Overview of programming > IEC 61131-3 conformity

17.07.2017 91

Range Extensions of IEC Reason

Data types fail-safe data types SAFEBOOL, SAFEINT, etc. for
all supported IEC data types

For PLCopen: data type
for the distinction of safe
signals in accordance
with PLCopen

generic data types/func-
tions

Each SAFExxx data type is classified alongside X in
the hierarchy of the generic data types.
This means that the generic functions (AND, ADD,
SEL, EQ, etc.), which are defined on type X among
other things, are analogously also defined on type
SAFEX.

For PLCopen: Generic
functions on type X make
just as much sense on
type SAFExxx. No new
functions need to be
"invented".

Additional variants of the "AND" function which do
not correspond to the generic type scheme:
n AND: BOOL x SAFEBOOL → SAFEBOOL
n AND: SAFEBOOL x BOOL → SAFEBOOL

For PLCopen: "confirma-
tion functionality" or
"enabling" function

Conversion functions A_TO_B are generic with
regard to the SAFE qualification:
n A_TO_B : A → B
n A_TO_B: SAFEA → SAFEB

Analogy to generic func-
tions: ADD on INT and
on TIME is understood to
be a function because
the same happens; it
saves the user having to
write different function
names (ADD_INT,
ADD_TIME).
The same also happens
with INT_TO_BOOL on
INT/BOOL and on
SAFEINT/SAFEBOOL;

implicit conversions Data of the type SAFExxx can be assigned to varia-
bles or inputs of the type X ("SAFE Polymorphy").
Among other things, this enables the call of the
generic function ADD with an INT and a SAFEINT
value.
n SAFEBOOL → BOOL
n SAFEINT → INT
n SAFEDINT → DINT
n SAFETIME → TIME
n SAFEBYTE → BYTE
n SAFEWORD → WORD
n SAFEDWORD → DWORD

For PLCopen: SAFExxx
data and xxx data are
not different types of
data, but data with dif-
ferent integrities. Data of
higher integrity can be
used where lower integ-
rity is sufficient.

POUs POUs can be qualified in order to limit their lan-
guage subset or their use:
n Level: Basic, Extended, External
n “Single call” attribute (see Ä “Object properties

of a POU” on page 77)

Level: for the explicit dis-
tinction of the PLCopen
programming level.
Single call: identifies FBs
to which the "Single call"
PLCopen rule applies.

Programming
Overview of programming > IEC 61131-3 conformity

17.07.201792

Table 5: Additional extensions in CODESYS Safety
Range Extension Reason

implicit conversion Data of the type INT or SAFEINT can be assigned to
variables or inputs of the type DINT or SAFEDINT
("INT polymorphy")
n INT → DINT
n SAFEINT → SAFEDINT

The range of values of
INT or SAFEINT is con-
tained in the range of
values of DINT or SAFE-
DINT.

FB types Instead of the standard function blocks: SF_XXX
variants with SAFE variants of the inputs/outputs
(except inputs with reset semantics: RESET, LOAD
or IN)

necessary for the pro-
cessing of safe signals
with standard FBs

6.1.4 Differences of programming in standard CODESYS
In addition to the reduction of the language subset as compared to
IEC 61131-3, programming in CODESYS Safety deviates from
standard CODESYS in some places because it is stricter.
1. Compliant with IEC, the local use of global variables (explicit

and implicit, constant and not) in a POU always requires a
corresponding external declaration.

2. Compliant with IEC, internal variables (VAR) are not visible
from outside (instead of only; as in standard CODESYS not
assignable).

3. Compliant with IEC, input variables can be set in the call
only.

4. Compliant with IEC, the evaluation of a parameters is never
skipped when calling the operators SEL and MUX.

5. Compliant with IEC, it is an error if there is no corresponding
input to select in a MUX call at the first input value.
CODESYS Safety detects this error in runtime mode and trig-
gers a corresponding error response.

6. Compliant with IEC, the counter parameters PV and CV of
the safety variants SF_CTU, SF_CTD, SF_CTUD from the
standard function blocks CTU, CTD, and CTUD have the
type INT instead of UINT. Therefore, its highest counter value
is 0x7fff.

7. Numbers are (SAFE)INT/DINT values, not BOOL/BYTE/
WORD values. The generation of a (SAFE)BYTE/WORD
value requires the qualification of the number with the type.
For example, word#0 oder word#16#8000: The alternative to
TRUE and FALSE is not 1 and 0, but bool#1 and bool#0.

8. A numeral (literal number constant) greater than 215-1. For
example, 16#8000 is a (SAFE)DINT value, not a (SAFE)INT
value, regardless of the base. This means that 16#FFFF is
not equal to the INT value -1, but a positive DINT value
216-1.

Restrictions

Programming
Overview of programming > Differences of programming in standard CODESYS

17.07.2017 93

9. There are no implicit type conversions except for INT to DINT
(INT polymorphism) and SAFE type to type (SAFE polymor-
phism).

10. Error in runtime mode for various conversion functions if the
output value is not in the value range of the target type.

6.2 Programming guidelines
6.2.1 Recommendations for the documentation of the code

NOTICE!
You should consider in advance what you want to
document in your application with additional com-
ments and then stay with that as the guidelines for
documentation.

Regardless of the basic standard for certification, and regardless of
the features of your workflow and your project, the following gen-
eral guidelines are recommended.
n The documentation must be complete, available, legible and

understandable.
n All changes over all life cycles must be documented.
n The project documentation must contain

– Legal entity (company)
You can specify this information in the object properties of
the application object (“Safety” tab, “Comment” field).

– functional description of the requirements of the project
– I/O description
– version of the function block library employed

This information is generated automatically when printing
the application object (see Ä Chapter 10.3.2 “Printing
project documentation” on page 207).

n Each POU/FB must have the following available information:
– Author
– Date of creation
– Date of release
– Version
– Version history
You can specify this information in the object properties of the
POU object in the “Safety” tab (“Object version” and
“Comment” fields).

n Sufficient commenting on the networks
A network title and a network are supported for the com-
menting of networks.

Rule P1 (Documentation)

Programming
Programming guidelines > Recommendations for the documentation of the code

17.07.201794

The display is optional and can be activated and
deactivated in “Tools è Options
è Safe FBD options” (see online help). We recom-
mend that it remain displayed at all times.

n Sufficient commenting on the declaration lines

Commenting
CODESYS Safety offers the following possibilities to comment on
the safety application, its objects and their contents:
n For each source object of the safety application: Comment field

and version (application, POU, GVL, NVL, logical I/O, task, and
not library manager)
The fields for the comment and version are located in the
object properties (“Safety” tab) (see online help).

n Comment field for the entire safety application (“Properties”
dialog of “Safety app”)
The source code information can be used here: company
author, description, inputs and outputs, and configuration man-
agement history.

n For every FBD network: Network title and network comment
The display is optional (see information above). We recom-
mend that it remain displayed at all times.

n For every declaration: One comment (POU, GVL, NVL, vari-
able mapping of logical I/Os)

n For every program entry in the task: One comment

The checker optionally checks whether comments
exist for the application and the POUs. The fulfill-
ment of the programming guidelines by these or
the other comments must be verified manually.

Settings for the display of warnings in the case of
missing comments on the safety application or a
POU are made in the “Properties” dialog of the
safety application.

6.2.2 Rules for identifiers of safety objects and variables

NOTICE!
The rules for the identifiers of safety objects and
variables should be maintained.

Rule P2 (Names)

Programming
Programming guidelines > Rules for identifiers of safety objects and variables

17.07.2017 95

n Names for POUs, GVLs, I/O modules, variables, networks
(labels), etc. are identifiers as defined in IEC 61131-3. Hence,
they must take the following form: They are a sequence of let-
ters, numbers and underscores, wherein the first character
may not be a number and the last character may not be an
underscore and two underscores may not directly follow each
other.

n Identifiers that begin with an underscore are reserved and may
not occur in Basic/Extended POUs and GVLs.

n The IEC keywords listed in IEC 61131-3 (2003-1, Program-
mable controllers, Part 3: Programming languages - Annex C)
may not be used as identifiers.

n The keywords extending beyond the IEC, which are reserved
by CODESYS Standard, may not be used as identifiers.

n The following are reserved as CODESYS Safety-specific key-
words and may not be used as identifiers:
– IOAPI, IOIN, IOOUT, SYSONLY
– SAFEXXX for all elementary standard data type names

XXX
– SF_FB for all standard function block types FB. FBs with

such names are allowed only for external FBs.
n The names of standard functions, which are forbidden in the

Extended Level of PLCopen, are not available as identifiers.
n Variable names must be unique within the scope of validity.

This means in detail:
– No two global variables may have the same name.
– No two POU-wide variables in the same POU may have

the same name.
– No POU-wide variable may have the same name as a

global variable. This is irrespective of whether or not the
global variable with VAR_EXTERNAL is imported into the
scope of validity of the POU.

– A variable may not have the same name as an object or a
library function block of the application.

n Names of labels must be unique
– A label may not have the same name as a POU-wide or

global variable.
n The prefix SF_ is reserved for PLCopen-compliant FBs and the

safety variants of the standard function blocks of the IEC
n Among the objects that belong to the safety application POUs,

GVLs, I/O modules, library function blocks no two may have
the same name.

n No object (POU, GVL, I/O module, library module) belonging to
the safety application may have the same name as a global
variable of the application, with one exception: implicit global
variables of an I/O module may have exactly the same name
as the I/O module itself (but not the same as another I/O
module or object).

Programming
Programming guidelines > Rules for identifiers of safety objects and variables

17.07.201796

6.2.3 Defensive programming
Different checks of signals are required. Checks for I/O devices
and for cross-communication are listed in Ä Chapter 6.4 “Linking
of I/O devices” on page 132 and Ä Chapter 6.5 “Cross-communi-
cation with network variables” on page 136.

NOTICE!
Plausibility tests for defensive programming should
be programmed (recommended in ISO 13649). For
example, it should be tested whether combinations
of input signals, of signals and states/times, repre-
sent a physical impossible situation.

No monitoring of data integrity has to be pro-
grammed (required by ISO 13849 and IEC 62061)
and control flow and data flow (required by IEC
62061). This is done by the system.

Basic Level
In Basic Level, no limiting value check has to be
programmed (required by IEC 62061). This is done
in the predefined function blocks.

NOTICE!
Extended-Level: For POUs that process numeric
values: "Reasonable" limiting value checks of input
signals and input variables (VAR_INPUT) have to
be programmed (required by IEC 62061).

6.2.4 Design rules for PLCopen-compliant function blocks
These programming rules correspond to the "General Rules for
Safety-Related Function Blocks" of the PLCopen. These apply to
individually developed PLCopen-compliant function blocks and to
the predefined function blocks of the SafetyPLCopen library (see
Ä Chapter 15.1.2 “Applicative libraries” on page 267).

Rule P3 (Check:Plausible)

Rule P4 (Check:Num)

Programming
Programming guidelines > Design rules for PLCopen-compliant function blocks

17.07.2017 97

PLCopen FBs can be used only in programs and
function blocks where "Single call" is set.

Default signal All safety-oriented Boolean I/O signals have the preset safe value "FALSE"

Signal level The value SAFEBOOL can be used only as follows:
= 0 corresponds to the safety as defined for system outputs
=1 means that the safety aspects of the system are operating correctly, e.g. normal
operation is possible.
This reflects the functionality of IEC 61131 environments, such as the rules for the
default value and that all outputs are set to "0" in case of error.

Outputs Every output must be assigned in each cycle.

Missing I/O param-
eters

Missing parameters are permitted. Default values are valid. These default values
should in under no condition lead to an unsafe state. The default values and their
attributes (variable or constant) are specified in the corresponding FBs.

Startup behavior At the start, the outputs are set to default values. After the first FB call, the outputs
are valid. There is a consistent start-up behavior (cold start).

Timing diagram Timing diagrams as shown for the FBs are used for explanation only. They do not
represent the exact time behavior. The exact time behavior depends on the imple-
mentation.

Error handling and
diagnosis

All safety-related function blocks have two error-related outputs: Error and DiagCode.
They are used for diagnostic purposes at the user level, not for diagnosing at the
system or hardware level.
The provision for safety-related environments is that the activation of the safety-ori-
ented function has the highest priority and that there is sufficient time for diagnosis in
the subsequent activation, either in the functional program or in the user interface.

Name Data type Description

Activate BOOL Variable or constant.
Activating of a POU. Initial value is FALSE.
This parameter can be linked to the variables that represent
the state (active or not active) of the relevant safety device.
This guarantees that no irrelevant diagnosis data is gener-
ated when the device is deactivated.
FALSE: All output variables are set to initial values.
If no device is connected, then a static TRUE signal must be
assigned.

S_<safety-oriented input
name>

SAFExxxx Every name of an input of SAFExxxx type begins with "S_".
Only variables can be assigned.

Guidelines specific to function
blocks

General input parameters

Programming
Programming guidelines > Design rules for PLCopen-compliant function blocks

17.07.201798

Name Data type Description

S_StartReset SAFEBOOL Variable or constant.
Activation of the automatic start of the POU when the S-PLC
is started (warm or cold).
FALSE (= initial value): Automatic start deactivated; manual
start by means of input reset.
TRUE: Automatic start
Ä “Rule FB1 (S_StartReset)” on page 105 and Ä “Rule FB2
(S_Start_Reset)” on page 105 must be noted.

S_AutoReset SAFEBOOL Variable or constant.
Activation of the automatic restart of the POU
FALSE (= initial value): Automatic restart deactivated;
manual start by means of input reset.
TRUE: Automatic restart
Ä “Rule FB3 (S_AutoReset)” on page 105 and Ä “Rule FB4
(S_AutoReset)” on page 105 must be noted.

Reset BOOL Variable. Initial value is FALSE.
Depending on the function, this input can be used for dif-
ferent purposes.
n Reset of the state machine and associated error and

state messages, as displayed via DiagCode, if the
cause of the error is remedied. This reset behavior is
designed as an error reset.

n Manual reset of a restart lock by the operator. This reset
is designed as a functional reset.

n Other POU-specific reset functions.
This function is active only for a signal switch from FALSE to
TRUE. A static TRUE signal does not generate any more
actions, but it can be detected as an error is some POUs.
Ä “Rule FB5 (Reset)” on page 106 must be noted.
The applicable meaning is described for each POU.

Name Data type Description

Ready BOOL TRUE: Indicates that the POU is activated and the output
results are valid (same as the POWER LED of a safety
relay).
FALSE: The POU is not active and the program is not exe-
cuted. Useful in debug mode or for activating and deacti-
vating additional POUs. Also for further processing in the
functional program.

S_<safety-oriented output
name>

SAFExxxx Every name of a SAFExxxx type begins with "S_".

General output parameters

Programming
Programming guidelines > Design rules for PLCopen-compliant function blocks

17.07.2017 99

Name Data type Description

Error BOOL Error flag (same as the "K1/K2" LED of a safety relay).
TRUE: Indicates that an error has occurred and the POU is
in the error state. The relevant error state is indicated at the
DiagCode output.
FALSE: There is no error and the POU is in another state.
This is also indicated by the DiagCode.
This is useful in debug mode, as well as for further pro-
cessing in the functional program.

DiagCode WORD Diagnosis registry.
All POU states (Active, Not Active, and Error) are mapped
by this registry. Only consistent code is displayed at the
same time. In case of several errors, the DiagCode output
displays the first detected error.
This is useful in debug mode, as well as for further pro-
cessing in the functional program.

A transparent and uniform diagnosis concept creates the basis for
all blocks. This makes sure that uniform diagnostic information is
available to end users in the form of DiagCode, regardless of the
implementation of the end user. If there are no errors, then the
internal state of the block (state machine) is displayed. Any errors
are displayed via a binary output (Error). For more detailed infor-
mation about internal or external block errors, see DiagCode. The
block must be reset by means of various reset inputs.

Table 6: General diagnostic code ranges
DiagCode Description

0000_0000_0000_0000bin The POU is not activated or the safety CPU is halted.

10xx_xxxx_xxxx_xxxxbin Indicates that the activated POU is in operating state without errors.
X = POU-specific code

11xx_xxxx_xxxx_xxxxbin Indicates that the activated POU is in error state.
X = POU-specific code

Table 7: System-specific or device-specific codes
DiagCode Description

0xxx_xxxx_xxxx_xxxxbin X = system-specific or device-specific message. This information
includes diagnostic information about the system or device.
Note: 0000hex is reserved.

Diagnostic codes

Programming
Programming guidelines > Design rules for PLCopen-compliant function blocks

17.07.2017100

Table 8: Generic diagnostic codes
DiagCode Description

0000_0000_0000_0000bin

0000hex

The POU is not activated. This code represents the idle state. As a
general example, the I/O setting could be as follows:
Activate = FALSE
S_In = FALSE or TRUE
Ready = FALSE
Error = FALSE
S_Out = FALSE

1000_0000_0000_0000bin

8000hex

The function block is activated without errors or other conditions that
set the safety output to FALSE. This is the standard operating state
where the safety output S_Out is TRUE in normal operation. As a gen-
eral example, the inputs and outputs could be set as follows:
Activate = TRUE
S_In = TRUE
Ready = TRUE
Error = FALSE
S_Out = TRUE

1000_0000_0000_0001bin

8001hex

An activation was detected by the block and the block is now acti-
vated. However, the S_Out safety output is set to FALSE. This code
shows the Init state of the operating mode. As a general example, the
inputs and outputs could be set as follows:
Activate = TRUE
S_In = FALSE or TRUE
Ready = TRUE
Error = FALSE
S_Out = FALSE

Programming
Programming guidelines > Design rules for PLCopen-compliant function blocks

17.07.2017 101

DiagCode Description

1000_0000_0000-0010bin

8002hex

The activated POU detects a safety demand (example: S_In =
FALSE). The safety output is deactivated (S_Out = FALSE). As a gen-
eral example, the inputs and outputs could be set as follows:
Activate = TRUE
S_IN = FALSE
Ready = TRUE
Error = FALSE
S_Out = FALSE

1000_0000_0000_0011bin

8003hex

The safety output of the active POU has been deactivated by a safety
request. The safety request is now canceled, but the safety output
remains FALSE until a reset condition is detected. This is an operating
state where the safety output S_Out = FALSE. As a general example,
the inputs and outputs could be set as follows:
Activate = TRUE
S_In = FALSE => TRUE (continue with static TRUE)
Ready = TRUE
Error = FALSE
S_Out = FALSE

Programming
Programming guidelines > Design rules for PLCopen-compliant function blocks

17.07.2017102

Fig. 43: Generic state chart of safety FBs

Explanation of the generic state chart:
n It provides a general overview of the states and transitions.

Some transitions are not named, which means that they are
FB-specific and must be defined with the respective FB.

n The chart shows three areas. In the upper area, the FB is not
active and in the safe state (safe outputs are FALSE). In the
middle area, the FB is active and in the safe state (safe outputs
are FALSE). In the lower area, the FB is in the normal state
(safe outputs are TRUE).

n The first horizontal line in the status diagram shows the transi-
tion from an inactive FB to an active FB.

n The second horizontal line shows the transition from a unsafe
state to a safe state.

n The priorities of possible parallel transitions are given by num-
bers (highest priority 0).

n The states contain the state name and the hexadecimal diag-
nostic code.

n The conditions "OR, AND, XOR" are used as logical operators
and "NOT" as negation.

n In the FB description, the start state is "idle", with the transi-
tions to the individual operating states via the state "Init".

Generic state chart

Programming
Programming guidelines > Design rules for PLCopen-compliant function blocks

17.07.2017 103

n Activate = FALSE switches from each state directly to the idle
state (0 = highest priority is reserved for Activate = FALSE).
For improved overview, these transitions are not shown in each
status diagram. This is mentioned as a footnote in each status
diagram.

n Dur to the overview, the setting of outputs is not defined in the
state chart. An explicit truth table, which includes the informa-
tion "FB states to output (outputs) ", is part of each FB specifi-
cation with the FB-specific error and stats codes.

Table 9: Block specific error codes
DiagCode Status name Status description and output setting

Cxxx Error Ready = TRUE
S_Out = FALSE
Error = TRUE

Table 10: Block-specific status codes (no error)
DiagCode Status name Status description and output setting

0000 Idle Ready = FALSE
S_Out = FALSE
Error = FALSE

8001 Init state of the operating
mode

Ready = TRUE
S_Out = FALSE
Error = FALSE

8xxx All states of the operating
mode where S_Out = FALSE

Ready = TRUE
S_Out = FALSE
Error = FALSE

8000 All states of the operating
mode where S_Out = TRUE

Ready = TRUE
S_Out = TRUE
Error = FALSE

Programming
Programming guidelines > Design rules for PLCopen-compliant function blocks

17.07.2017104

6.2.5 Rules for using PLCopen-compliant function blocks

CAUTION!
S_StartReset
This automatic start should be activated only if it is
guaranteed that no hazard can occur when starting
the safety controller. Therefore, the use of the fea-
ture "automatic start" of the function blocks
requires to implement other system or application
measures for making sure that no unexpected (or
unintentional) start-up occurs.

CAUTION!
S_StartReset
If the input is linked to a variable (and not to
FALSE), then additional validation measures must
be defined for it.

CAUTION!
S_AutoReset
The automatic restart should be activated only if is
it guaranteed that there can be no possible restart
of the machinery after releasing the emergency
stop button. Therefore, the use of the feature
"automatic restart" of the function blocks requires
to implement other system or application measures
for making sure that no unexpected (or uninten-
tional) restart of the machinery occurs.

CAUTION!
S_AutoReset
If the input is linked to a variable (and not to
FALSE), then additional validation measures must
be defined for it.

Rule FB1 (S_StartReset)

Rule FB2 (S_Start_Reset)

Rule FB3 (S_AutoReset)

Rule FB4 (S_AutoReset)

Programming
Programming guidelines > Rules for using PLCopen-compliant function blocks

17.07.2017 105

CAUTION!
Reset
The input is BOOL. But due to applicative safety
requirements, it can occur that the input can still be
activated in this application with SAFEBOOL sig-
nals only.

6.2.6 Automatically checked programming guidelines
The numerous additional programming guidelines for the individual
language elements checked by the checker, whose disregard will
lead to the error checker generating errors or warnings, are evident
from the explanations in the section for "Safety error messages" of
the CODESYS Safety online help.
The following PLCopen-based programming guidelines are
checked automatically by CODESYS Safety:
n Language subset of the Basic and Extended programming

level
n Linkage rules for SAFEBOOL data and analogous linkage rules

for the other SAFE-xxx data types
Additional automatically checked formal programming guidelines
n Declaration of data variables only with explicit initial value.

(Exception: FB instances and external declarations without ini-
tial value)

n Reading access to outputs of an FB instance only in or after its
call

n Assignment to output variables only at one point in the applica-
tion

n No local variable with same name as a global variable

In addition, the user can make settings for the checking of formal
programming guidelines. These can be set in the “Properties”
dialog on the “Safety” tab of the Safety Application Object.

Rule FB5 (Reset)

Optional automatically checked
programming guidelines

Programming
Programming guidelines > Automatically checked programming guidelines

17.07.2017106

Fig. 44: Properties dialog of the safety application object:

Programming
Programming guidelines > Automatically checked programming guidelines

17.07.2017 107

Warnings:
n “Treat warnings as errors”

If warnings occur when translating the safety application, these
are treated as errors; the consequence of this is that down-
loading to the safety controller is not possible as long as it con-
tains warnings.

n “Warn about object comments missing”
Object comments for POUs and the safety application
(For more details about commenting, see Ä Chapter 6.2.1
“Recommendations for the documentation of the code”
on page 94.)

n “Warn about unused objects”
No objects that are not used. This means:
– Every program of the safety application is called in the

safety task
– Each function block of the safety application is used,

i.e. it is instantiated in a GVL or a program, or it is instanti-
ated in a FB that is itself used

– A variable is used from each GVL.
– One of the implicit variables is used from each logical

device.
n “Warn about unused variables or labels”

No variables that are not used. This means:
– Each FB instance has a call
– Each constant, each input and each input variable has a

read access
– Each global variable and each local variable has a write

and a read access
– Each output and each output variable has a write access
In the extended level: No labels that are not used. This means:
– Each defined label is the destination of a conditional jump.

n “Warn about out-commented content”
No object contents that are commented out.

n “Number of significant characters in identifiers”
Limitation of the number of significant characters of identifiers

n “Maximum number of declarations per object”
Limitation of the number of declarations in an object (POU,
GVL)

n “Maximum number of networks”
Limitation of the number of networks in a POU (exception:
reused validated POUs)

n “Maximum number of calls per network”
Limitation of the number of calls in a network (exception:
reused validated POUs)

Programming
Programming guidelines > Automatically checked programming guidelines

17.07.2017108

6.3 Programming of the application logic
6.3.1 GVL

The GVL contains variable declarations that can be used in all pro-
gram POUs of the safety application. Function blocks (FBs) cannot
access global variables.
In order to be able to use a global variable in a program POU, it
must be declared there again as VAR_EXTERNAL. The
VAR_EXTERNAL declaration is inserted automatically when using
a global variable in a program.
Global variables do not serve the program overview and should be
used sparingly. However, they are occasionally indispensable for
the exchange of data between programs.
For information on the creation of variable declarations, see
Ä Chapter 5.6 “Variable declaration” on page 86

6.3.2 POUs
The program code of a safety application is created in POUs.
(Adding a new POU, see Ä Chapter 5.5.4.3 “POUs” on page 75)
A safety application must contain at least one POU that is not com-
mented out.
The editor of a POU consists of a variable declaration part, in
which the variables are declared, and an implementation window,
in which the program code is created.
In the implementation window the program code is created in suc-
cessive networks, which are processed in ascending order.

Fig. 45: Example: POU editor: Declaration part with a variable dec-
laration and implementation part with a network

For details about the POU editor, see Ä Chapter 6.3.3.1 “In gen-
eral about variables” on page 110.

Programming
Programming of the application logic > POUs

17.07.2017 109

Various operating functions are available to the
developer for the activation of commands during
programming in the FBD. Operation via the context
menu is usually described for the methods and
concrete examples in this manual.

Commands that are either not listed or cannot be
activated in the current context menu can also not
be executed at the momentary cursor position.

The following standard CODESYS commands can be executed
both in the implementation part and in the variable declaration part
of the FBD editor.
n Copy
n Delete
n Cut
n Paste
n Undo
n Redo
Furthermore, the following CODESYS commands are supported:
n Go To Definition
n Output cross-references
n Input Assistant
n Find & replace
n Select All
n Bookmark
The commands behave as in Standard CODESYS.

Refer to the CODESYS Standard online help for
detailed and fundamental information.

6.3.3 Variables
6.3.3.1 In general about variables

Programming with CODESYS Safety takes place in accordance
with IEC 61131-3 with the aid of variables. Variables are accessed
in the program code via names (symbolic variables), which must
be declared accordingly. Declared variables can be read and
assigned in the program code. For details of the names of varia-
bles, see Ä Chapter 6.2.2 “Rules for identifiers of safety objects
and variables” on page 95.

Standard commands

Programming
Programming of the application logic > Variables

17.07.2017110

The variables required for safety programming are declared and
edited in the declaration editor. This editor is the declaration part of
the POU editor. Since it is equipped with the special features nec-
essary for the GVL (Global Variable List), this editor is also used
for the declaration and editing of global variables.

Fig. 46: Declaration part of the POU editor with open context menu

Structure of the declaration part
n 1: Pin information of the higher-level safety application object

“SafetyApp”
n 2: POU type (“PROGRAM”), name of the POU with program-

ming level (“POU_Add (*Extended Level*)”)

The use of IEC data types other than those listed
in the following sections is not permitted. They are
not also available as free identifiers and their
names remain reserved keywords and cannot be
defined by the user.

In the following sections, the listed programming guidelines that
are automatically checked in CODESYS Safety are substantiated
with the respective language elements.

Newly edited, changed and deleted variable declarations are
marked in color for a better overview:
Only the fields affected by the last-performed editing operation are
highlighted. The marking of the last-performed action is always
visible. All markings are removed upon closing the object (POU or
GVL).
Markings in the declaration part
n Green: Newly added fields
n Red: Changed fields
n in the “Line” column of the deleted variable
n The line with the change marking is marked on the left by a red

bar.

Change markings in the declaration
part of the editor

Programming
Programming of the application logic > Variables

17.07.2017 111

Fig. 47: Example of change marker: Data type of the variables
iVarIn was changed

Fig. 48: Example of change marker: New variable iVarCount was
added

The differences to the previous version are marked in color after
each editing operation. The marking of the last-performed action is
always visible. All markings are removed on closing the POU.
n Green: Newly added networks or elements
n Red: Changes to an existing network/element
n The network with the change is marked red.
n Blue: Deletion mark for deleted network or element

Fig. 49: Example of change marker: Newly added POU call

Fig. 50: Example of change marker: Input mapped to Var2

Fig. 51: Example of change marker: Deleted network

Change markings in the implemen-
tation part of the editor

Programming
Programming of the application logic > Variables

17.07.2017112

Possible declarations in the declaration part of a POU:
n IEC keyword VAR: Flags the declaration of normal internal vari-

ables (throughout the POU).
n IEC keyword VAR_INPUT flags the declarations of input varia-

bles (throughout the POU).
n IEC keyword VAR_OUTPUT flags the declarations of output

variables (throughout the POU).
n IEC keyword VAR_EXTERNAL flags the declarations of global

variables already declared with VAR_GLOBAL in the applica-
tion (in GVL or implicitly in the logical I/O) in order to make
them usable in the POU.
External declarations according to PLCopen are not permitted
in programs with Basic programming level.

n CONSTANT
– For the declaration of symbolic constants
– In the case of VAR_EXTERNAL CONSTANT for the decla-

ration of constant global variables
– Can be applied to VAR and VAR_GLOBAL,

but the variable may not be an FB_Instance

Variable names must be unique within the scope of validity. This
means in detail:

The following literal constants are available:
n Integer literal with optional type annotation (INT or DINT) and

different bases
n Boolean literals: TRUE, FALSE
n Bit string literal for BYTE, WORD, DWORD and different

bases.
BYTE and DWORD literals are available only in implicit code
and external FBs

n TIME literals
The format of the literal constants must correspond to the usual
format in standard CODESYS.

When assigning non-SAFE values to SAFE varia-
bles or SAFE inputs, the variables or the input are
marked dark red in the editor

Types of declaration

Modifiers

Variable names

Literal constants

Programming
Programming of the application logic > Variables

17.07.2017 113

6.3.3.2 Data types
In the safety programming with CODESYS Safety, distinction is
made between safety-related and non-safety-related data. The
non-safety-related data are the IEC standard data types. In the
case of safety-related data the IEC standard data types are
extended by the prefix SAFE.
The mapping variables of the input and output channels of safe
field devices always have a SAFExxx data type, while the mapping
variables of non-safe field devices always have a non-SAFE data
type.

Table 11: IEC standard data types
Data type Bit Length Value range Description

BOOL 1 0, 1 0 corresponds to FALSE
1 corresponds to TRUE

DINT 32 - 2,147,483,648 ... 2,147,483,647

INT 16 -32,768 ... 32,767

TIME 32 0 ... 2,147,483.647 s Duration

WORD 16 0 ... 65,535
(16#00 ... 16#FFFF)

The BYTE, DWORD, SAFEBYTE and SAFED-
WORD data types can appear only in the logical
I/Os and can be used in Extended level programs
as channel variables (category: global variables,
declaration as VAR_EXTERNAL) (see Ä Chapter
5.5.4.2.4 “Use of logical I/Os in the project”
on page 75).

Table 12: SAFE data types
Data type Bit Length Value range Description

SAFEBOOL 1 0, 1 0 corresponds to FALSE
1 corresponds to TRUE

SAFEDINT 32 - 2,147,483,648 ... 2,147,483,647

SAFEINT 16 -32,768 ... 32,767

SAFETIME 32 0 ... 2,147,483.647 s

SAFEWORD 16 0 ... 65,535
(16#00 ... 16#FFFF)

Programming
Programming of the application logic > Variables

17.07.2017114

The REAL data type is not permissible in Safety
programming. If it is nevertheless used, this
causes a translation error.

Fig. 52: Declaration view: Drop-down list of the type

6.3.3.3 Variables for Basic POUs
Variables for program POU - Basic Level
n VAR
n VAR CONSTANT
n VAR_EXTERNAL for channel variables and stack instances
n VAR_EXTERNAL CONSTANT allowed only from

VAR_GLOBAL CONSTANT

Keywords of the variable declara-
tion for Basic Level

Programming
Programming of the application logic > Variables

17.07.2017 115

Variables for function block POU - Basic Level
n VAR
n VAR CONSTANT
n VAR_INPUT
n VAR_OUTPUT
Meaning of the keywords
n VAR declaration of normal internal variables, POU-wide vari-

able
n VAR_INPUT: Declaration of input variables
n VAR_OUTPUT: Declaration of output variables
n The CONSTANT modifier serves the declaration of symbolic

constants

n BOOL
n INT: Only as constant input parameter for an FB call
n DINT: Only as constant input parameter for an FB call
n WORD: Only as output for diagnostic purposes
n TIME: Only as constant input parameter in FB call
n SAFEBOOL
n SAFEINT only as constant FB input in call
n SAFEDINT: Only as constant input parameter in FB call
n SAFEWORD: Only as constant input parameter in FB call
n SAFETIME: Only as constant input parameter in FB call
The REAL data type is not available.

User-defined types are all the function blocks of the application and
the function blocks of the following libraries that are listed in
Ä Chapter 15.1 “Version list of the function blocks” on page 267.
Function blocks of the SafetyStandard library available in the Basic
Level are:
n SF_CTU
n SF_CTD
n SF_CTUD
n SF_TON
n SF_TOF
n SF_TP
The bistable FBs and edge FBs are not permitted in the Basic
Level.
Limitations for function block types
n No direct or indirect recursion of FBs may occur.
n The variable may not be declared as a constant.
n Instances of normal FB types can occur only as global varia-

bles and internal variables. (Input variables, output variables
and logical I/Os can only be of a Basic type)

Basic Level data types

Basic Level function block types

Programming
Programming of the application logic > Variables

17.07.2017116

6.3.3.4 Variables for Extended POUs
Variables for program POU - Extended Level
n VAR
n VAR CONSTANT
n VAR_EXTERNAL
n VAR_EXTERNAL CONSTANT
Variables for function block POU - Extended Level
n VAR
n VAR CONSTANT
n VAR_INPUT
n VAR_OUTPUT
Meaning of the keywords:
n VAR declaration of normal internal variables, POU-wide vari-

able
n VAR_INPUT: Declaration of input variables
n VAR_OUTPUT: Declaration of output variables
n VAR_EXTERNAL: Declaration of global variables already

declared in the application with VAR_GLOBAL, in order to
make them usable in the POU.
Global variables having the CONSTANT modifier must be
declared as VAR_EXTERNAL CONSTANT.

n The CONSTANT modifier serves the declaration of symbolic
constants

Already existing variables of the "global variables" category are
available for the declaration as VAR_EXTERNAL and
VAR_EXTERNAL CONSTANT:
n Global variables of the GVL object of the safety application.

If a variable of the GVL object of the safety application is used
in the implementation part, then it is automatically declared as
an external variable in the declaration part.
According to IEC it is explicitly forbidden to use global variables
in a POU without declaring them as "External".

n Mapping variables of the logical I/Os (logical exchange devices
and safe field devices)

The declaration of VAR_IN_OUT variables is not
possible in Basic and Extended POUs.

The following data types are available to the developer for the
implementation of a POU in the Extended programming level.
Safety standard types:
n BOOL
n BYTE: For the exchange of encoded information (status code,

diagnostic code, control code) between predefined function
blocks and the environment

Keywords of the variable declara-
tions for POUs Extended Level

Extended Level data types

Programming
Programming of the application logic > Variables

17.07.2017 117

n DINT
n DWORD: For the exchange of encoded information (status

code, diagnostic code, control code) between predefined func-
tion blocks and the environment

n INT
n TIME: Allows as a constant input parameter and for local varia-

bles.
External declarations of global variables of the type SAFETIME
are not permissible

n WORD: For the exchange of encoded information (status code,
diagnostic code, control code) between predefined function
blocks and the environment

n No REAL data type
n SAFEBOOL
n SAFEBYTE: For the exchange of encoded information (status

code, diagnostic code, control code) between predefined func-
tion blocks and the environment

n SAFEDINT
n SAFEDWORD: For the exchange of encoded information

(status code, diagnostic code, control code) between prede-
fined function blocks and the environment

n SAFEWORD: For the exchange of encoded information (status
code, diagnostic code, control code) between predefined func-
tion blocks and the environment

n SAFEINT
n SAFETIME, allowed as a constant input parameter and for

local variables.
External declarations of global variables of the type SAFETIME
are not permissible if they are neither symbolic constants nor
imported logical I/Os.

The REAL data type is not available

The user-defined types for the Extended Level are all the function
blocks of the application and all the function blocks of the following
libraries that are listed in Ä Chapter 15.1 “Version list of the func-
tion blocks” on page 267.
The following limitations apply to function block types:
n No direct or indirect recursion of FBs may occur.
n The variable may not be defined as a constant.
n Instances of normal FB types can occur only as global varia-

bles and internal variables. (Input variables, output variables
and logical I/Os can be only of a Basic type).

Extended Level function block
types

Programming
Programming of the application logic > Variables

17.07.2017118

6.3.4 Networks
6.3.4.1 Overview of networks

Programming units in FBD are subdivided into networks which are
consecutively numbered in ascending order and which can contain
graphically illustrated elements such as operands, FB calls, assign-
ments, jumps or labels. The networks are processed in ascending
order.
In a network, the program code must have a tree structure; this
means no parallel interconneciton, no splitting, and no explicit
feedback loops.
The logical elements of a network are joined by lines to make a
tree-like formation (tree for short) with the root to the right; the
boxes in this tree function as nodes. Exception: Multiple assign-
ments as well as jump and return instructions fan this tree out in
opposite directions. The elements are connected automatically by
the editor according to their insertion position; free placement is not
possible.

The following FBD special operators supported in CODESYSStan-
dard are not supported in CODESYS Safety:
n Edge recognition with assignments (to inputs and variables)
n Set/Reset
n EN/ENO parameters

Refer to the CODESYS Standard online help for
detailed and fundamental information on the use of
the FBD editor.

Commands for networks (can be activated in the context menu)
n “Insert network”
n “Insert network (below)”
n “Toggle network comment state”
n “Insert box”

(see Ä Chapter 6.3.4.3 “Operators” on page 123 and
Ä Chapter 6.3.4.5 “FB calls” on page 130)

n “Insert empty box”
(see Ä Chapter 6.3.4.3 “Operators” on page 123 and
Ä Chapter 6.3.4.5 “FB calls” on page 130)

n “Insert input”
(see Ä Chapter 6.3.4.3 “Operators” on page 123)

n “Insert assignment”
(see Ä Chapter 6.3.4.2 “Data flow and assignments”
on page 122)

n “Insert label”
(see Ä Chapter 6.3.4.4 “Jump/return and jump label”
on page 128)

Fundamental functions of the FBD
editor

Commands for FBD networks

Programming
Programming of the application logic > Networks

17.07.2017 119

n “Insert jump”
(see Ä Chapter 6.3.4.4 “Jump/return and jump label”
on page 128)

n “Insert return”
(see Ä Chapter 6.3.4.4 “Jump/return and jump label”
on page 128)

n “Set output connection”
(see Ä “Define output connection” on page 131)

n “Remove unused FB call parameters”
(see Ä “Remove unused FB call parameters” on page 131)

n “Update parameters”
(see Ä Chapter 6.3.4.5 “FB calls” on page 130)

The activation of the “Insert network” context menu command
inserts a network in the implementation part of the editor. If net-
works already exist, the network will be inserted before the current
network.
The “Insert network below” context menu command causes a net-
work to be inserted below the current network.

Fig. 53: Example: Network 2 inserted below Network 1

A network is commented out or placed in the normal state by the
“Toggle network comment state” command. When commented
out, the elements contained in the network are ignored and shown
as inactive.

Fig. 54: Example: Out-commented network

Insert networks

Toggle network comment state

Programming
Programming of the application logic > Networks

17.07.2017120

Fig. 55: Example: Normal state of the network

A title and a comment can be added to each network if the corre-
sponding FBD options are activated.
1. In the “Tools” menu, open the “Options” dialog
2. In the “Options” dialog, open the “Safe FBD options” dialog.
3. Select the “Display network title” and “Show network

comment” options
4. Click “OK” .

A network title can be edited directly in the first line of the network;
the network comment can be edited in the second line of the net-
work. In both cases the respective line must be selected first.

Fig. 56: Dialog: 'Safe FBD options'

Fig. 57: Network with title and comment

Network title and network comment

Activation of the safe FBD options

Programming
Programming of the application logic > Networks

17.07.2017 121

6.3.4.2 Data flow and assignments
Networks visualize the data flow by the connections between varia-
bles, operators, and FB calls.

The data flow of fail-safe signals of FBD programming is high-
lighted in CODESYS Safety as follows:
n Literal and constantly declared variables have a yellow back-

ground.
n SAFExxx variables are highlighted in yellow.
n The data flow of SAFE values into SAFE variables and into

inputs of operators and function blocks is represented by thick
yellow lines

n Function blocks are illustrated in yellow if they have at least
one SAFE output

n Operator call boxes are filled in with yellow if the output is
SAFE. This is the case under the following conditions:
– AND operator: The output is SAFE if at least 1 input is

SAFE.
– All other operators, including conversions: The output is

SAFE if all inputs are SAFE.

Fig. 58: Example for safe data flow: The AND operator with literal:
TRUE, SAFE variables: VarIn and VarOut, Operator AND

An assignment is an FBD element that takes up the incoming
signal flow in a network and stores it in an operand, i.e. writes it
into the variable. A variable is always necessary for an assignment.
Assignments can be inserted only at the output of a box.
The insertion of assignments takes place as in the standard FBD of
CODESYS.

Fig. 59: Example: Assignment inserted in an empty network

Data flow of fail-safe signals

Assignments

Examples of assignments

Programming
Programming of the application logic > Networks

17.07.2017122

Fig. 60: Example: Multiple assignment by inserting a new assign-
ment at the existing assignment

When assigning non-SAFE values to SAFE varia-
bles or SAFE inputs, the variables or the input are
marked dark red in the editor.

NOTICE!
When switching between two variables of types
(SAFE)BYTE, (SAFE)WORD, (SAFE)DWORD,
both must represent the same information (for
example, 2x drive control word, or 2x valve status).

6.3.4.3 Operators
The built-in standard functions that represent a subset of the
standard IEC functions are called operators. User-defined func-
tions cannot be created in the safety programming.
The operators have the same semantics as in Standard
CODESYS. They can be connected to both SAFExxx and standard
data types.
Some operators can be extended by additional inputs by means of
the command “Insert input” command. These are identified as fol-
lows:

Boolean operators
n AND (2 inputs) - extendable
n AND (3 inputs) - extendable
n OR (2 inputs) - extendable
n OR (3 inputs) - extendable
All operands of the OR must be SAFEBOOL.

Rule P13 (Bitcodes)

Operators in the Basic Level

Programming
Programming of the application logic > Networks

17.07.2017 123

Boolean operators
n AND (2 inputs) - extendable
n AND (3 inputs) - extendable
n OR (2 inputs) - extendable
n OR (3 inputs) - extendable
n XOR
n NOT

CAUTION!
The careless use of the XOR and NOT operators
can lead to the loss of the fail-safe property of
SAFExxx variables, for which no checker warning
is generated.
The XOR and NOT operators can negate the fail-
safe property of a SAFExxx variable, so that the
SAFE variable loses its fail-safe property, i.e. it
becomes "non-fail-safe". This can lead to uninten-
tional starting of the plant.
Programming rule: The SAFExxx outputs of NOT
and XOR must be determined. Subsequently, it
must be ensured that these NOT/XOR outputs are
not connected through to outputs (I/Os).

Mathematical operators
n ADD (2 inputs) - extendable
n ADD (3 inputs) - extendable
n SUB
n MUL - extendable
n DIV - Runtime error for division by zero (see below)
Linking values with ADD, SUB, MUL, and DIV can result in a
number that is outside of the value range of the data type. If a
value range violation occurs in runtime mode, then this is consid-
ered an error in the program according to IEC 61131-3 [N1.1.3-
Sec.2.5.1.5.2] and [N1.1.3-Sec.2.5.1.5.6]. This error is not diag-
nosed by CODESYS Safety. Instead, the application continues as
follows:
DIV: If division of the input values does not return an integer, then
the calculation continues with the next largest or smallest integer,
as determined by the CPU.
ADD, SUB, and MUL on DINT/SAFEDINT values: If the mathemat-
ical operators return a number N outside of the value range of
DINT, then the calculation continues with the following number
inside of the DINT value range. For a positive N, this is the first
number in the DINT value range that is reached by repeated sub-
traction of 4294967296 (232). For a negative N, this is the first
number in the DINT value range that is reached by repeated addi-
tion of 4294967296 (232).

Operators in the Extended Level

Rule P5 (NOT/XOR)

Programming
Programming of the application logic > Networks

17.07.2017124

ADD, SUB, MUL on INT/SAFEINT values: If the mathematical
operators return a number N outside of the INT value range, then
this is still in the DINT value range and calculation continues with
this number N‘ in subsequent operators. Mathematical operators
are applied according to the rules for DINT/SAFEDINT values.
Conversions INT_TO_xxx of N' lead to a runtime error. When
assigning N‘ to an INT variable, the following value is saved in the
variable in the INT value range. For a positive N', this is the first
number in the INT value range that is reached by repeated sub-
traction of 65536 (216). For a negative N, this is the first number in
the INT value range that is reached by repeated addition of 65536
(216).

CAUTION!
The negligent use of the operators ADD, SUB,
MUL, and DIV can lead to value range violations
that go unnoticed, causing unexpected behavior of
the application. Values can be linked only with
ADD, SUB, MUL, and DIV if a range violation can
be excluded (application logic, limiting value tests,
etc.), or if it is recognized in the application and in
this case not used in the resulting value (but
instead, for example, using SEL to replace it by an
applicable value).

More mathematical operators (not extendable)
n EQ
n NE
n LT
n LE
n GT
n GE
Other operators
n SEL
n MUX - extendable; runtime error for invalid first input (see

below)
Conversions
n BOOL_TO_INT
n BOOL_TO_DINT
n BOOL_TO_TIME
n BOOL_TO_WORD
n BYTE_TO_INT
n BYTE_TO_DINT
n BYTE_TO_TIME
n BYTE_TO_WORD
n DINT _TO_BOOL
n DINT_TO_BYTE - Check of the value range (see below)
n DINT_TO_INT - Check of the value range (see below)

Rule P12 (Operators)

Programming
Programming of the application logic > Networks

17.07.2017 125

n DINT_TO_TIME - Check of the value range (see below)
n DINT_TO_WORD - Check of the value range (see below)
n DINT_TO_DWORD
n DWORD_TO_DINT
n DWORD_TO_TIME
n INT_TO_BOOL
n INT_TO_BYTE - Check of the value range (see below)
n INT_TO_DINT
n INT_TO_DWORD
n INT_TO_TIME - Check of the value range (see below)
n INT_TO_WORD
n TIME_TO_BOOL
n TIME_TO_BYTE - Check of the value range (see below)
n TIME_TO_INT - Check of the value range (see below)
n TIME_TO_DINT - Check of the value range (see below)
n TIME_TO_WORD - Check of the value range (see below)
n TIME_TO_DWORD
n WORD_TO_BOOL
n WORD_TO_BYTE - Check of the value range (see below)
n WORD_TO_DINT
n WORD_TO_INT
n WORD_TO_TIME
n WORD_TO_DWORD

CODESYS Safety reacts to the following overranges with a run-
time error, as a result of which the application is stopped and a log
entry is generated.

Runtime error in case of operator
overrange in the Extended Level

Programming
Programming of the application logic > Networks

17.07.2017126

Level Language element Runtime error in case of

Extended DIV Division by 0

Extended MUX Call with first input with a negative value or with a value N that
is greater than the number of inputs minus 1; e.g. MUX(2,
16#8000, 16#8001)

Extended DINT_TO_INT,
TIME_TO_DINT,
TIME_TO_INT,
DINT_TO_TIME,
INT_TO_TIME,
DINT_TO_WORD,
TIME_TO_WORD,
DINT_TO_BYTE,
INT_TO_BYTE,
TIME_TO_BYTE,
WORD_TO_BYTE

Output value is not in the value range of the target type: When
converting between two ANY_MAGNITUDE types (INT, DINT,
TIME), the numerical output value must lie within the range of
values of the target type (where TIME values are counted as a
number of milliseconds). When converting from/to bit string
types (BYTE, WORD, DWORD), the bit pattern of the output
value must be a bit pattern of the target type. Examples:

DINT_TO_INT(16#0000FFFF), because 216-1 is not an INT
value,
likewise DINT_TO_TIME(- 1), because there are no negative
TIME values
TIME_TO_DINT(t#365d), because 365 days = 3,153,600,000
ms = 16#BBF81E00 and is thus larger than the largest DINT
number 231-1 = 16#7FFFFFFF
INT_TO_BYTE(- 1), since BYTE encompasses only 0 to 255,
WORD_TO_BYTE(0xFFFF), since BYTE only extends to 0xFF.

The standard behavior of SEL/MUX i.e. the max-
imum value is selected if the input value is too
large and 0 is selected if the input value is negative
must be programmed in the safety application.

Fig. 61: Programming of the standard behavior of SEL: for k<0

Fig. 62: Programming of the standard behavior of SEL: for k>max,
n...maximum value

Programming
Programming of the application logic > Networks

17.07.2017 127

Fig. 63: Programming of the standard behavior of MUX for k<0

Fig. 64: Programming of the standard behavior of MUX for k>

6.3.4.4 Jump/return and jump label
The sequential processing order of the POU is interrupted by a
conditional jump. If the jump condition is TRUE, the jump takes
place to a network marked by the label.
The processing order of the POU is interrupted with a conditional
return instruction. The POU is quit when the return condition is ful-
filled.

Jumps and returns are permitted only as condi-
tional forward jumps and conditional returns. They
are possible only in the Extended programming
level. In general no jumps/returns are permitted in
the Basic programming level.

n Conditional forward jumps and returns are permitted only at the
end of the network (in the case of multiple assignments after
the final assignment)

n A network with a label must exist within the same POU as the
jump destination.

n The jump destination network must lie behind the network with
the jump.

n The jump destination may not be located in a commented-out
network.

n The condition of a jump/return must be Boolean.

Jump/return

Programming
Programming of the application logic > Networks

17.07.2017128

NOTICE!
Conditional forward jumps should be used only for
state machines according to the PLCopen rules for
"safety software".

NOTICE!
Returns should be used only as error jumping
according to the PLCopen rules for "safety soft-
ware".

CAUTION!
The careless use of conditional jumps and returns
can lead to the loss of the fail-safe property of
SAFExxx variables. No warning is generated by
the safety checker as a result of this.
Jumps with safe condition are uncritical in this
regard.
A conditional jump, which depends on an unsafe
value and has an assignment to a SAFExxx vari-
able as its jump destination, allows an unsafe input
to influence a safe output. The following rule
applies to this:
It is necessary to determine all assignments to
SAFExxx variables that are destinations of condi-
tional jumps that depend on unsafe variables. Care
must be taken that the safety of the machine is
guaranteed in all cases.

Labels are destination addresses for jumps and can only be
inserted at the start of a network using the “Insert label” context
menu command.
A label between the call of the FB and the reading of an output of
this FB is not permitted

Fig. 65: Example: Inserted label

Rule P6 (Jump)

Rule P7 (Return)

Jump label

Programming
Programming of the application logic > Networks

17.07.2017 129

6.3.4.5 FB calls
On calling the function block the formal parameters are supplied
with the current values of the input variables or literals or are
assigned to the outputs. The formal parameters and their assigned
variables/constants must be of the same data type. The instance
name is defined in the declaration section of the editor as a vari-
able with data type = function block name.
FB instances can access only their own POU-wide data and
parameters.

Fig. 66: Example: Instance Inst1 of the FB SF_TON with formal
parameters IN, PT, Q, ET

In CODESYS Safety, the function blocks of the "SafetyPLCopen"
and "SafetyStandard" safety libraries and, if necessary, further
safety libraries are available to the developer in addition to the
function blocks that he has created himself.

NOTICE!
Before you use a library function block, you must
be acquainted with the documentation for this func-
tion block. The documentation of the library block
must correspond to the version of the library block
currently used in the application: you can verify this
by comparing the version information of the func-
tion block documentation with the object version of
the function block, which is displayed in the
“Objects” tab of the safety application object
editor.

Fig. 67: Example: FB call

The insertion of function blocks takes place in the same way as in
standard FBD of CODESYS.

Functional principle of FB calls

Insert Box; Insert Empty Box

Programming
Programming of the application logic > Networks

17.07.2017130

The position in the network at which the selected FB is inserted
depends on where the command is executed:
Command is executed
n in a network, so that a link between two FBs with safe inputs or

outputs is created:
The first SAFE inputs or SAFE outputs are always automati-
cally linked to one another.

n in an empty network:
The inputs and outputs are additionally labelled according to
the signature of the object for function block calls. The instance
names of function blocks are displayed via the box.

n at the main output of another box:
The first input of the new box is connected to the main output
of the existing box. The insertion of a box at a non-main output
of another box is not possible.

n at an input of another box:
the new box is inserted between the ingoing signal flow and the
input of the existing box.

The inputs and outputs of a box that represent a function block call
can be deleted with the “Delete” command in the context menu. In
doing so the elements connected to this input or output are also
deleted. If the main output of a FB call located within a network is
deleted, then the entire tree to the left of this box output will be
removed (i.e. including the block itself) in case of a network. If the
box is the (right-hand) end of a network, the last output (main
output) can also be removed; the block is then retained and has no
outputs.

The “Define Output Connection” command specifies which output
of a box with several outputs should be used for the output connec-
tion (main output). Each box with outputs can have only one main
output. Other boxes can be connected to this box only at its main
output. The command can be executed only at the output of a box
with several outputs. If the main output is redefined, all elements
connected to the old main output will be automatically set to the
new main output and the assignment targets connected to the old
auxiliary output will be automatically set to the new auxiliary output.

The “Update Parameters” command updates the inputs and out-
puts of a function block call. In doing so, the parameters of the box
are compared with those defined in its interface. If a new input or
output is added, this is connected to the empty variable. If an input
or output is omitted, this is deleted together with all connected ele-
ments. Allocation takes place via the names of the inputs or out-
puts.

The “Remove Unused FB Call Parameters” command removes all
unoccupied input and output connections of the call. The minimum
number of inputs demanded by the FB remains.

Insertion position

Deletion of the inputs and outputs

Define output connection

Update Parameters

Remove unused FB call parameters

Programming
Programming of the application logic > Networks

17.07.2017 131

6.4 Linking of I/O devices
6.4.1 Access to Input and Output Signals

I/O access takes place exclusively via the logical I/Os. Each map-
ping variable can be declared like a global variable as
VAR_EXTERNAL and used in the program.

6.4.2 Linking digital 1oo1 and 1oo2 Input Devices

CAUTION!
The evaluation logic of the input device is to be
observed when using a safe input signal!

CAUTION!
1oo1 input signals are checked for plausibility, for
example against a second, redundant input signal
by means of function block SF_Antivalent or
SF_Equivalent.

Distinction is made between two possible evaluation logics:

n 1oo1
n 1oo2
1oo1 evaluation means that only one sensor is present that gener-
ates a SAFEBOOL value if the function is as expected.
1oo2 evaluation means that one of two sensors must function as
expected in order to generate the SAFEBOOL value. If a sensor
does not exhibit the expected behavior, the value is set to the fail-
safe value.
In the case of the 1oo1 evaluation the error detection is performed
separately for each channel. In this case additional measures may
be necessary at the level of the safety application and in the
peripheral circuitry.

In general for PROFIsafe (i.e. PROFIBUS and
PROFINET): The value of the F parameter
“F_SIL” indicates the evaluation logic. "SIL2"
means 1oo1 evaluation, and "SIL3" means 1oo2
evaluation. (In case of simple input terminals, the
sensors must be connected depending on this
parameter. Details should be taken from the device
documentation). In case of FSoE input devices
their evaluation logic must be taken from the
device documentation.

Rule P8 (check:1oo1)

Programming
Linking of I/O devices > Linking digital 1oo1 and 1oo2 Input Devices

17.07.2017132

The safety application is connected as follows to Safety input
devices with 1oo2 evaluation:

Fig. 68: Connection of the safety application to Safety input device
with 1oo2 evaluation

Some PLCopen function blocks, such as SF_GuardMonitoring, can
be connected both to input devices with 1oo2 evaluation (see the
following illustration) and to input devices with 1oo1 evaluation
(see Fig. 73).

Fig. 69: 1oo2 evaluation, SF_GuardMonitoring

Fig. 70: Connection of the safety application to Safety input device
with 1oo1 evaluation

The switches can consist of any combination of normally closed
(NC) and normally open (NO) that take into consideration the
requirements and the capability to detect errors of the Safety input.
In Fig. 70, an additional error detection must be implemented in the
safety application. This is implemented either in the signal-pro-
cessing function block or separately via the SF_Equivalent function
block (see Fig. 72) or the SF_Antivalent function block (see
Fig. 71).

Fig. 71: 1oo1 evaluation: Error detection with SF_Antivalent

Access to 1oo2 input signals

Access to 1oo1 input signals

Programming
Linking of I/O devices > Linking digital 1oo1 and 1oo2 Input Devices

17.07.2017 133

If the SF_Antivalent function block is used, the NC switch must be
connected to a specific function block input. SF_Antivalent imple-
ments the necessary error detection for the combination of NC
switch with NO switch. To this end the switches must be connected
to the corresponding inputs (S_ChannelNC and S_ChannelNO).

Fig. 72: 1oo1 evaluation: Error detection with SF_Equivalent

SF_Equivalent implements the necessary error detection for the
combination of two NC switches or two NO switches. The
SF_Equivalent processes two SAFEBOOL inputs and monitors the
signal to check that it changes equivalently within a specified dis-
crepancy time.

Fig. 73: 1oo1 evaluation, SF_GuardMonitoring

With some PLCopen function blocks, such as SF_GuardMoni-
toring, the error detection is implemented for the combination of
two NC or two NO switches in the function block itself. This means
that the switches can be connected directly to the function block
without an upstream SF_Equivalent. (Fig. 69 shows how such
function blocks can be connected to 1oo2 input devices).

6.4.3 Monitoring of digital input and output devices

CAUTION!
The functionality of input devices (sensors, probes,
etc.) and output devices (actuators, relays, etc.)
that are used as safety functions must be moni-
tored.

PLCopen has defined corresponding function blocks for monitoring
safety devices that are normally used in machine safety. The fol-
lowing PLCopen FBs are available in CODESYS Safety:
n SF_Equivalent: Plausibility monitoring of two equivalent inputs

that are linked to a logical output.
n SF_Antivalent: Plausibility monitoring of two antivalent inputs

that are linked to a logical output.

Rule P9 (Check:Devices)

Programming
Linking of I/O devices > Monitoring of digital input and output devices

17.07.2017134

n SF_ModeSelector: Plausibility monitoring of 1 of 8 switches for
the selection of the mode of operation, e.g. manual, automatic.

n SF_EmergencyStop: Evaluation of the emergency stop
switches (start-up lock)

n SF_ESPE (Electro-Sensitive Protective Equipment): Evaluation
of a non-contact functioning safety sensor (start-up lock)

n SF_GuardMonitoring: Plausibility monitoring of two safety door
switches (start-up lock)

n SF_TwoHandControlTypeII: Plausibility monitoring of a two-
hand control type II according to EN 574 (without temporal
monitoring of the two input signals).

n SF_TwoHandControlTypeIII: Plausibility monitoring of a two-
hand control type III according to EN 574 (with temporal moni-
toring of the two input signals of a fixed 500 milliseconds).

n SF_GuardLocking (Safety guard interlocking with locking):
Guard door monitoring with tumbler (start-up lock).

n SF_TestableSafetySensor: Function block for checking non-
contact operating safety devices type 2 with periodic tests.

n SF_MutingSeq: Function block for the temporary suppression
of the protective function in order to transport material into or
out of a danger zone safeguarded with an ESPE. Arrangement
with 4 sensors with signal sequence in a specified serial order.

n SF_MutingPar: Function block for the temporary suppression
of the protective function in order to transport material into or
out of a danger zone safeguarded with an ESPE. Arrangement
with 2 pairs of sensors in a given order.

n SF_MutingPar_2Sensor: Function block for the temporary sup-
pression of the protective function in order to transport material
into or out of a danger zone safeguarded with an ESPE.
Arrangement of the 2 sensors so that their beams cross.

n SF_EnableSwitch: Plausibility monitoring of a 3-stage confir-
mation button (start-up lock)

n SF_SafetyRequest: Function block for the plausibility moni-
toring of the safety function of a generic actuator such as a
drive or valve.

n SF_OutControl: Confirmation ANDing of a process signal with
safety signal (start-up lock)

n SF_EDM (External Device Monitoring): Monitoring of external
connected relays/contactors with positively-driven contacts for
checking their switching function.

The detailed description of the function blocks is found in the online
help.

Programming
Linking of I/O devices > Monitoring of digital input and output devices

17.07.2017 135

6.4.4 Linking of input devices
The processing of analog input signals requires an Extended-Level
POU. For problems in an analog input device or in a problem in the
communication with it, the responsible driver instance D (see also
Ä Chapter 14.1 “General section” on page 247) sets the corre-
sponding analog input signals in the application to the value 0 and
a corresponding diagnosis output to FALSE (for FSoEMaster and
NetVar-Receiver: D.S_InReady; for PROFIsafeHost:
D.FV_activated_S).

NOTICE!
An analog input signal in the Extended Level must
be linked in such as way that the value 0 is treated
as a dangerous value and leads to an appropriate
safety reaction (0 as fail-safe). Or the diagnosis
output (D.S_InReady or D.FV_activated_S))
of the corresponding driver instance must be
included in the logical link in such as way that the
value FALSE leads to an appropriate safety reac-
tion.

In the case of digital inputs, checking is not necessary because
FALSE is globally defined in safety technology as a fail-safe value.

6.5 Cross-communication with network variables
Safety NetVars fulfill the function of safe cross-communication in
CODESYS Safety. It permits the configuration and operation of
safe data exchange between CODESYS Safety safety controllers
in a project.
The principle: A CODESYS project contains several main control-
lers with inserted safety controllers. Data is safely exchanged
according to the following principle: A safe controller publishes
data via a sender (object of type “Safety NVL (sender)”) and other
safety controllers of the project can read the data with the help of a
receiver (object of type “Safety NVL (receiver)”). The communica-
tion path is established via the main controller.

Safety network variables are accessed by means of the safety net-
work variable list (sender) and safety network variable list
(receiver).
The safety network variables can be declared as VAR_EXTERNAL
(like global variables) and used in the safety application. However,
network variables are not ordinary global variables. Particularities
have to be considered on both sides:

Rule P10 (analog fail-safe)

Objects

Programming
Cross-communication with network variables

17.07.2017136

On the sender side, network variables are outputs of the applica-
tion. That means a value must be assigned to them precisely one
time in the cycle. However, not any values should assigned; other-
wise there is a risk of hazardous undersampling (see Ä Chapter
6.5.1 “Sampling rate and undersampling” on page 138).
On the receiver side, network variables are inputs of the applica-
tion. This means they can be read but not written. However, you
also have to consider which undersampling measures have been
taken on the sender side, and a treatment of the case of under-
sampling has to be defined (see Ä Chapter 6.5.1 “Sampling rate
and undersampling” on page 138).
When the values are transmitted successfully, the network varia-
bles on the receiver side receive the values of the connected net-
work variables on the sender side.

By default, network variables use UDP broadcasts
in the machine network. To reduce the network
load, the IP addresses of the opposite standard
controller can be set fixed (see online help, section
"Object Safety Network Variable List (Sender)" and
"Object Safety Network Variable List (Receiver)",
part "Tab PLC network").

NOTICE!
When network variables are published on the
sender side, all project editors automatically have
permission to configure the use of these variables
in the receiver application if they generally have
the user permission of configuring the use of varia-
bles.

Programming
Cross-communication with network variables

17.07.2017 137

NOTICE!
A receiver application can have multiple receiver
NVLs that subscribe multiple sender NVLs of the
same sender application. This guarantees neither
– that the values from different NVLs originate

from the same cycle of the sender application
(cycle consistency), nor

– That also the values of the other NVL are
transmitted (communication consistency) in the
case of successful transmission of NVL values.

If several receiver NVLs (in different receiver appli-
cations) subscribe the same sender NVL, then this
guarantees neither that each of them contain the
values from the same cycle of the sender applica-
tion (cycle consistency), nor that also the other
receiver NVLs have received the values (communi-
cation consistency) in the case of successful trans-
mission of values of the sender NVL to the receiver
NVL.

In order not to have to change a sender controller with additional
receiver controllers for future extensions to the machine, and there-
fore accept it again, the receiver limit can be set as a precaution to
the receiver number N in maximum configuration (greater than the
current number of receivers in the machine). Then the user can
check beforehand that the sender application does not exceed its
cycle time, even in maximum configuration with N running variable
connections to N receivers.

In case of communication problems, the network variables at the
receiver side contain the substitute value 0 or FALSE.
The receiver application can check the connection status by means
of the driver instance <NVL name> of the NVL driver POU "NetVar-
Receiver" and confirm communication errors.
The sender application can control the sending readiness by
means of the driver instance <NVL name> of the NVL driver POU
"NetVarSender" and activate failsafe substitute values.
For an overview of the driver POUs, see Ä Chapter 14.4.1 “Library
'SafetyNetVar'” on page 263, and general information about driver
POUs, see Ä Chapter 14.1 “General section” on page 247.

6.5.1 Sampling rate and undersampling
The values of the safety network variables and receive acknowl-
edgments are always sent in sync at the end of an application
cycle (output phase) and received at the start of an application
cycle (input phase). The cycle times of the applications of sender
and receiver and the transmission time influence the sampling rate
of the network variable values.

Monitoring the communication

Danger of undersampling

Programming
Cross-communication with network variables > Sampling rate and undersampling

17.07.2017138

If a network variable in the sender is switched quickly from value A
to value D and back again to A, then it is possible that value D is
never transmitted to the receiver (undersampling). The case of the
value D of this variable representing a situation in the current state
of the application, which requires a safety function to be triggered,
can lead to a hazard.

CAUTION!
In order to prevent signals that are too short from
being undetected or incorrectly transmitted, the
signals of the safety network variables must not be
too short when they are transmitted. The user must
ensure on the sender side (as for a sensor or input
module) that in the sender a hazardous signal D or
a signal D, which demands a safe response,
– either queues as long as the hazard exists and

the response is required,
– or queues at least as long as the greatest

watchdog time of all connections to this signal.
This means that it queues long enough for it to
be processed in time by all receiver controllers.

Measures for reducing undersampling and measures for detecting
undersampling are described below.
n If the applications of the safety network variable list (sender)

and the safety network variable list (receiver) have the same
cycle times and the transmission time is less than half of the
cycle time, then a value change in the safety network variable
list (sender) must pause for four cycles so that is it guaranteed
to arrive in the safety network variable list (receiver).
Sampling rate: 1 value change per 4 cycles of the NVL sender

n If the safety network variable list (receiver) has a relatively
short cycle time, then a new value change in the safety net-
work variable list (sender) must not be made immediately in the
next cycle. A value change must pause in the NVL sender for
at least two cycles.
Therefore, the best possible sampling rate: 1 value change per
2 cycles of the NVL sender. This best possible sampling rate is
achieved when the cycle time of the NVL sender is greater
than 2 x cycle time NVL receiver + 2 x transmission time.

The sender is in control of reducing hazardous undersampling by
the allocation of network variables with signals with the "correct"
properties.
The following programming rules are an example of a measure for
reducing undersampling.

Rule P11 (NvlSend)

Preventing hazardous undersam-
pling

Programming
Cross-communication with network variables > Sampling rate and undersampling

17.07.2017 139

Rules for SAFEBOOL network variables
n Rule "Restart lockout": You publish a network variables that

pause at FALSE (according to fail-safe principle: a hazard-indi-
cating or response-demanding signal) until the operator has
confirmed with a signal edge the absence of the hazard and
the withdrawal of the safety response, or a restart.

n Rule "Locked sensor": You publish variables that are con-
nected to the input signal of a sensor with mechanical locking,
for example an emergency control device. The operator con-
firms the end of the hazard by resetting the lock.

n Rule "Physical minimum duration": You publish variables that
represent a process value (e.g., guard door open) if is repre-
sents a hazardous situation only after a physically guaranteed
minimum duration (time for passing through the guard door);
and when this minimum duration is longer than the watchdog
time of the connection to the sensor plus the longest watchdog
time of all receivers.

Sample rules for SAFEINT network variables
n Rule "Decision in sender": You publish analog process values

(e.g. velocity, position) not for the purpose of receivers moni-
toring values and triggering a safety function. Instead, you
monitor these analog process values yourself and report to the
receiver when specific values are reached. This means instead
that you publish digital network variables, from which the
receiver can make its response dependent. For these varia-
bles, undersampling can be prevented with the rules for SAFE-
BOOL network variables.

n Rule "Extreme value detection in sender": You do not publish
monitored analog process values (velocity, position, tempera-
ture, etc.) directly. Instead, you determine their greatest and
least achieved values and publish these values only. Receivers
can then check limit violations on their own (up or down) and
trigger safety functions without missing extreme values due to
undersampling. Provide for a restart of the extreme value
detection by the operator after a safety response of the
receiver due to a limit violation. Then the receiver can begin
again with the current process values.

n Rule "Non-reactive signals": You publish values that are not
used for receivers to detect hazards. This means that none of
their values represents a hazard-indicating or response-
demanding signal. Therefore, there is no specific value of the
network variable that would trigger a safety function in the
receiver, and therefore no value whose undersampling would
cause a required response to be omitted.

If undersampling is not excluded by prevention measures, then
measures for detecting undersampling and the reaction to it should
by implemented.
In order for the receiver to be able to detect the loss of a short-term
signal change, corresponding preparatory work must be performed
on the sender side.
A possible implementation could look like this:

Detection of undersampling
(sender and receiver)

Programming
Cross-communication with network variables > Sampling rate and undersampling

17.07.2017140

Sender side
n Add a SO_changecount_k variable of data type SAFEINT to

every sender NVL Nk with SO_xk network variables.
n Create a counter program Pk for each sender NVL Nk, with a

local old_xi flag variable for each SO_xi network variable.
n In the counter program Pk, determine whether or not the value

of any variable has changed by comparing SO_xi and
old_xi.

n If the value of a variable has changed, then increment
SO_changecount_k by 1.

n Note the values of SO_xi in old_xi.
n Add Pk to the task list.
Receiver side
n Detection: On the receiver side, the sent current

S_changecount counter of the safety network variable list
(receiver) is compared with the counter that was sent one cycle
before. If both counters are equal, or if the current sent counter
is greater by one, then this means that no signal has been lost.

n Reaction: If the counter is greater by more than one, then a
signal has been lost. The reaction could be to set all received
network variables to fail-safe values. However, as the applica-
tion may not overwrite the variables in the receiving NVL, you
would have to rename the network variables in the NVL in
SI_raw_xi for such a reaction, and create a GVL with global
variables (or local variables in the same program) with the
name SI_xi. In the good case, the SI_raw_xi values are
copied to SI_xi. In the case of undersampling, the fail-safe
values are copied to SI_xi.

6.6 Task configuration
The calling order of the programs (POU type “PROGRAM”) and
the cycle time are defined in the task object, which must be present
in the safety application. The program list, which must contain at
least one call entry, is always processed from the beginning fol-
lowing the expiry of the cycle time. If the cycle time is exceeded
when processing the program list, this causes a runtime error. For
more precise information on the task object, see Ä Chapter 5.5.4.4
“Safety Task” on page 79

6.7 Examples
6.7.1 Programming example for Basic Level

The example "Two-hand control with EDM" from the document
"PLCopen - Technical Committee 5 Safety Software Technical
Specification Part 2: User Examples Version 1.01 Official Release"
is used as a CODESYS Safety Safety programming example for a
program in the Basic Level and illustrated as a CODESYS Safety
FBD implementation.

Programming
Examples > Programming example for Basic Level

17.07.2017 141

For further examples of programming in the Basic
Level, refer to the document "PLCopen - Technical
Committee 5 Safety Software Technical Specifica-
tion Part 2: User Examples Version 1.01 Official
Release".

The following safety functions are used in this example:
n When actuating the emergency stop button, all hazardous

movements must be stopped (via SF_EmergencyStop)
Emergency stop has the highest priority. After releasing the
EStop button, a reset is required via S0-Reset.

n The safety output is activated by pressing both pushbuttons of
the two-hand control. Releasing any of the two-hand pushbut-
tons deactivates the safety output and stops the hazardous
movement via the switching devices K1 and K2 (via SF_Two-
HandControlTypeII)

n The initial condition and the operating condition of the con-
nected switching devices are monitored. The safety output
cannot become operational if an error is detected. (via
SF_EDM)

n After switching on the safety or functional application, or after
an emergency stop condition, the two-hand control must be
released and actuated again in order to activate the safety
output again (via SF_OutControl). In order to ensure this for
the functional restart, the process signal of the functional appli-
cation is connected to the Activate input of the two-hand con-
trol function block THC_S2_S3. (If the application process is
restarted while the two-hand control is activated, the function
block status changes to C0003, which signals the error that
both pushbuttons are pressed during activation and prevents a
restart).

In this example only one operating condition exists.

Functional description of the safety
functions

Programming
Examples > Programming example for Basic Level

17.07.2017142

Fig. 74: Variable declaration for programming example: Two-hand control with EDM

Fig. 75: Implementation of programming example: Two-hand control with EDM

Table 13: Inputs:
Name Data type Description

S1_S_EStopIn SAFEBOOL Emergency stop button S1

S2_S_Switch1 SAFEBOOL Switch S2 connected to pushbutton 1 of
the two-hand control

Programming
Examples > Programming example for Basic Level

17.07.2017 143

Name Data type Description

S3_S_Switch2 SAFEBOOL Switch S3 connected to pushbutton 2 of
the two-hand control

K1_S_EDM1 SAFEBOOL Feedback from external device K1

K2_S_EDM2 SAFEBOOL Feedback from external device K2

S0_Reset BOOL Reset by developer with switch S0
(derived from the functional application)

Process BOOL Release of the movement by the process
(derived from the functional application)

Table 14: Outputs:
Name Data type Description

S_EDM_Out_EDM_K1_K2 SAFEBOOL triggers the actuator via K1 and K2

Error_EStop_S1 BOOL Error flag of EStop_S1

Error_THC_S2_S3 BOOL Error flag of TCH_S2_S3

Error_OC_K1_K2 BOOL Error flag of OC_K1_K2

Diag_EStop_S1 WORD Diagnostic code for EStop_S1,
16#8xxx: Regular operation,
16#Cxxx in case of error in EStop_S1

Diag_THC_S2_S3 WORD Diagnostic code for THC_S2_S3,
16#8xxx: Regular operation,
16#Cxxx in case of error in THC_S2_S3

Diag_OC_K1_K2 WORD Diagnostic code for OC_K1_K2,
16#8xxx: Regular operation,
16#Cxxx in case of error in OC_K1_K2

This example can also be used with SF_TwoHandControlTypeIII.
The input of “Activate” was set to TRUE for the sake of simplicity.
This can be replaced by a variable in the application.

Table 15: Information on the function block parameters employed
Function Block Input Constant value Description

EStop_S1 S_StartReset FALSE No automatic reset if the S-PLC is
started.

 S_AutoReset FALSE No automatic reset; reset/confirmation by
developer is necessary

Additional remarks

Programming
Examples > Programming example for Basic Level

17.07.2017144

Function Block Input Constant value Description

OC_K1_K2 S_StartReset TRUE Automatic reset is allowed if the S-PLC is
started.

 S_AutoReset TRUE Automatic reset; reset/confirmation by
developer is not necessary

 Static Control FALSE A dynamic change of the Appl_Control
signal (rising edge) is demanded after
function block activation or a triggered
safety function (S_SafeControl to FALSE)

EDM_K1_K2 S_StartReset FALSE No automatic reset if the S-PLC is started

 MonitoringTime T#200ms The maximum response time of the two
feedback signals
S_EDM1 and S_EDM2

Programming
Examples > Programming example for Basic Level

17.07.2017 145

Programming
Examples > Programming example for Basic Level

17.07.2017146

7 Application generation and online mode

7.1 Introduction
Like CODESYS Standard, CODESYS Safety also supports an
online mode.
The functions of the online mode serve debugging and diagnosis in
the development and verification of a safety application.
The online commands can be executed on the selected device
object, on the device editors and on the selected or active applica-
tion object. The online functionality of CODESYS Safety does not
differ in principle from the online functionality of Standard
CODESYS. The special features of the online functionality of
CODESYS Safety are described in this section.

Ä “Glossary” on page 299 includes the terminology and its further
explanation.
n Online
n Offline
n Safe mode
n Debug mode (unsafe mode)
n Download application
n Boot application
n Confirmed connection
n Teleaccess

DANGER!
The developer is responsible for ensuring the
safety of the plant/machine over the entire time
period in which the safety controller is in debug
mode (e.g. by cordoning off the machine (organiza-
tional measure)).

NOTICE!
Networks where applications and machines with
cross-communication are developed must be phys-
ically separated from operational networks for reli-
able exclusion of any influence.

Application generation and online mode
Introduction

17.07.2017 147

In order for the CODESYS online functions and
input assistance to work for the safety application,
they must fulfill the standard compiler version as
well as the safety language subset. If a later com-
piler version is used in the project, then additional
limitations may result for the safety application. For
example, there may be new keywords that can no
longer be used as identifiers.

You do not detect a violation of such additional lim-
itations with the “Build è Build” command, but
when you log in for the first time. A corresponding
message appears and login is not possible. For
setting the compiler version, see
Project environment in the standard online help.

7.2 Connection to the safety controller
Requirements for connecting to the safety controller
n The requirements for full access are a network connection and

the connection confirmation.
Before each connection to a safety controller for full access,
this is checked for consistency between the CODESYS device
object and the safety controller by means of its own connection
ID. If the connection ID is not yet available or is inconsistent,
then the user must confirm the "new" connection.
With the connection confirmation the user confirms that the
network connection has connected him with the correct con-
troller.

n The requirements for teleaccess are a network connection, the
telepassword, and the activation of teleaccess. Teleaccess is
used in operation and it is described in Ä Chapter 12 “Opera-
tion” on page 217 (see Ä Chapter 12.3.1 “Connection to the
safety controller for teleaccess” on page 225).

For the development, creation, and debugging of
safety applications, full online functionality is
required between CODESYS Safety and a safety
controller. This requires a confirmed connection to
the safety controller specified by the developer
within the CODESYS network.

NOTICE!
Teleaccess is not qualified for verification and
acceptance.

Application generation and online mode
Connection to the safety controller

17.07.2017148

ms-its:codesys.chm::/_cds_dlg_project_environment_compiler_version.htm

7.2.1 Communication settings general information
The “Communication” tab contains in the right-hand section the
data and information on the current settings for the communication
between the programming system and the safety controller. This
tab corresponds to CODESYS Standard. Refer to the CODESYS
Standard online help for further information.

NOTICE!
CODESYS provides two alternative views of the
communication settings. The new graphical view is
not approved for use with CODESYS Safety.
Before opening the “Communication settings” tab
in the “Tools è Options è Device editor” dialog,
activate the “Use classic display of the
communication settings” option.

Fig. 76: 'Communication settings' tab with "Gateway-1" communi-
cation tree

7.2.2 Connection setup

1. Set the active path to the desired device (device name) on
the “Communication settings” tab of the safety controller, see
Ä “Network connection for the confirmed connection”
on page 149 (procedure is same as in standard CODESYS;
refer to the standard CODESYS online help for details).

2. Activate the “Login” command in the “Online” menu.
3. The dialog “Connect to safety controller” opens. Select the

connection type “Confirmed connection” .
4. Perform the action on the safety controller as described in

the dialog (e.g. press button)
5. Click “OK” .

Network connection for the con-
firmed connection

Application generation and online mode
Connection to the safety controller > Connection setup

17.07.2017 149

6. Depending on whether no application, an unchanged boot
application or a changed boot application is present on the
safety controller, corresponding dialogs appear that have to
be checked and if necessary confirmed

7. In the “Authorization” dialog, enter the set boot application
password (BA password). The password for a new controller
is system-specific (e.g. blank).

Fig. 77: Dialog 'Connect to safety controller'

The connection confirmation can take place (system-specifically)
by means of an action on the device or by entering a unique con-
troller instance ID. The type of confirmation to be executed is
defined by the respective safety controller.
The connection to the safety controller always takes place under a
user name. If the developer is not logged in as a user, then the cur-
rent user name of the operating system (Windows) is used.
Connection confirmation variants
n Action on the safety controller
n Input of the controller instance ID

For connection to the controller an action must be carried out
directly on the controller, e.g. the actuation of a button. The devel-
oper is requested to confirm the connection by an action on the
safety controller in the “Connect to safety controller” dialog
(Ä “Network connection for the confirmed connection”
on page 149). No online connection can be established to the
safety controller without the action on the safety controller.

Connection confirmation

Variant 1: Action on the safety con-
troller

Application generation and online mode
Connection to the safety controller > Connection setup

17.07.2017150

If the developer does not confirm within the system-specific waiting
period, then the corresponding dialog is opened again and the
developer can repeat the action on the safety controller.

The connection to the controller must be confirmed by inputting the
controller instance ID (“Instance identification”) for this controller.
The developer is requested to do so in a dialog. If the identification
is rejected by the controller, then the dialog is opened again and
the developer can repeat the input of the controller instance ID.
The controller instance ID is uniquely specified for the controller
(e.g. serial number) and cannot be changed by the user.
A successful, confirmed connection becomes invalid after the fol-
lowing actions:
n Change of user in the CODESYS project
n Copying of the CODESYS project to another computer
n Change of the controller instance (node to which the connec-

tion is to be made) within the CODESYS project

NOTICE!
If several safety controllers are in online mode in
projects with several safety controllers, then a
query dialog opens before the execution of online
commands, asking which controller the commands
should go to; the user must then verify the device
name displayed by checking it against the expecta-
tion and aborting the online command in case of
error.

7.2.3 Device name
The device name is a name assigned by the developer for a con-
troller in his network. It is used to identify the controller in write
commands (see Ä Chapter 7.5.2 “Debug mode and organizational
safety” on page 161) and in info displays (see Ä Chapter 12.3.2
“Information on firmware and boot application ” on page 226).
The name of the controller (device name) is not stored in the
project, but on the safety controller.

DANGER!
Unique device names must be assigned for the
safety controllers in the network.
The developer is always responsible for ensuring
that each command goes to the correct controller.

Variant 2: Controller instance ID

Application generation and online mode
Connection to the safety controller > Device name

17.07.2017 151

1. Open the “Communication settings” tab.
2. Select the gateway.
3. Click the “Scan network” button.
4. Select the node point.
5. Click “Change device name” in the context menu.
6. Enter a new, unique name in the “Connect to safety

controller” dialog (see Fig. 78).
7. Perform the action on the safety controller described in the

“Connect to safety controller” dialog, or enter the controller
instance ID (“Instance identification”).

8. Click “OK” .

Fig. 78: Dialog for changing the device name

7.3 Log in to the controller and switch it to debug mode
With the “Login” command in the Online menu, an online connec-
tion is established between the application for which the command
is executed (active application) and the controller. The developer
can only log in to the application (boot application) on the controller
from the project if the application in the project and the application
on the controller correspond. Therefore, a comparison between the
application in the project and the application running on the safety
controller takes place before the execution of a login process:

Changing the device name

Login

Application generation and online mode
Log in to the controller and switch it to debug mode

17.07.2017152

n If there is no application on the controller, the developer will be
asked in a dialog whether the application is to be loaded to the
safety controller (see Fig. 79). If the application is loaded to the
safety controller (download), then the safety controller is in
debug mode. The application is in online mode.

n If the two applications have different names (i.e. a different
application is running on the safety controller), then a dialog
asks whether the application on the safety controller should be
terminated and the current application loaded to the safety con-
troller. If this current application is loaded to the safety con-
troller (download), then the safety controller is in debug mode.
The application is in online mode.

n If the current application has been changed, a dialog asks
whether the application on the safety controller should be ter-
minated and the current application loaded to the safety con-
troller (see Fig. 80). If this current application is loaded to the
safety controller (download), then the safety controller is in
debug mode. The application is in online mode.

n If the current application and the application on the safety con-
troller are identical and have the same Pin, a message appears
informing you that the login is taking place to a pinned applica-
tion. The safety controller is in safe mode. The application is in
online mode.

n If the current application and the application on the safety con-
troller are identical but not pinned, the login takes place without
a dialog. The safety controller is in safe mode. The application
is in online mode.

In those cases that lead to the download of the application and to a
switch to debug mode, the developer is instructed to ensure safety
through organizational measures.

DANGER!
The developer is responsible for ensuring the
safety of the plant/machine during the entire time
period in which the safety controller is in debug
mode.

Fig. 79: Dialog for logging in to an "empty" controller

Application generation and online mode
Log in to the controller and switch it to debug mode

17.07.2017 153

Fig. 80: Dialog for logging in to a controller with a modified applica-
tion

Applications with the same name are regarded as
different if the list of objects is not identical or if at
least one checksum of the objects is different or if
the Pin checksum is different. See safety applica-
tion object Ä Chapter 5.5.4.1 “Safety application
object” on page 51.

A safety application is temporarily loaded to the controller with a
download. A download takes place by activating the “Login” com-
mand in the “Online” menu. In order for the new safety application
to communicate as configured with field devices, exchange varia-
bles, and network variables, a consistent version must be running
on its main controller (see Ä Chapter 6.5 “Cross-communication
with network variables” on page 136).
The project is checked for correctness before logging in. Logging in
to the controller is not possible if the project is erroneous.

The safety controller is in debug mode as long as
an application temporarily loaded to the safety con-
troller is still on the safety controller.

The “Logout” online command terminates the existing online con-
nection to the application. The following variants are possible

Download

Logout

Application generation and online mode
Log in to the controller and switch it to debug mode

17.07.2017154

n The developer is logged in to the current boot application and it
is in the safe mode:
– The online connection is terminated
– The boot application continues to run

n The developer is logged in to the application, which is in debug
mode (download application or boot application), and a boot
application is stored on the safety controller:
– The application is unloaded.
– The developer is asked in a dialog whether the stored boot

application is to be loaded and started (see Fig. 81).
In this case the debug release is terminated and the safety
controller switches to safe mode.

n The developer is logged in to the application (see Fig. 82) and
there is no boot application on the safety controller:
– The application is unloaded.

If an automatic logout is performed by the RTS (error case), then
the temporary download application is terminated and the boot
application is not started automatically.

Fig. 81: Dialog: Logging out in the case of differing boot application
and download application

Fig. 82: Dialog for logging out and loading the boot application

Application generation and online mode
Log in to the controller and switch it to debug mode

17.07.2017 155

7.4 Creation and restart of the boot application
A running application is created as a boot application and stored
on the safety controller by activating the “Create boot application”
command in the “Online” menu. The command is available only if
the developer is logged in to the safety controller.

The creation of a boot application can be executed
only after explicit confirmation by the developer.
The status of the application or Pin identification is
displayed in the confirmation dialog.

Fig. 83: Dialog 'Create boot application'

Possible statuses of the application:
n Application is not consistent with the Pin (In Work)
n Application is consistent with the Pin
n Application is consistent with the Pin, but not with the Pin of the

boot application last created from this project (see Fig. 84).
If in these three cases a boot application is created after confirma-
tion by the developer, then the download application remains
loaded and the controller remains in debug mode

Creation of the boot application

Application generation and online mode
Creation and restart of the boot application

17.07.2017156

Fig. 84: Dialog: 'Create boot application' for changed pin

DANGER!
If the “Create boot application” command could
not be executed successfully, this could result in a
hazard in the machine following a restart, because
it could possibly still restart with the old application.
The service employee must wait for the message
informing him whether the command was success-
fully executed. If this does not come, the controller
is to be treated as if the boot application can start
again after the restart.

A boot application on the controller is restarted by activating the
“Restart” command (“Safety Online Information” tab of the con-
troller) or automatically after switching on the controller.

Restart does not mean that the plant begins to run.
The developer defines in the safety application
whether the PLCopen function blocks and the safe
output modules start up automatically (auto-reset)
or are started only by a standard signal (reset).

Restart of the boot application

Application generation and online mode
Creation and restart of the boot application

17.07.2017 157

Fig. 85: Dialog for restarting the boot application

7.5 Operating modes
7.5.1 Operating state and application state

Fig. 86: Operating modes of the safety controller

The two possible operating modes of a safety controller pro-
grammed with CODESYS Safety are safe and unsafe.

Operating states of the safety con-
troller: safe and unsafe

Application generation and online mode
Operating modes > Operating state and application state

17.07.2017158

Safe mode is the name given to the mode of the safety controller in
which a boot application is loaded and the controller is not oper-
ated in debug mode. The safety controller is in safe mode as long
as the boot application runs and the developer does not access it
by writing. The control switches to debug mode as soon as a
writing access takes place. The controller also remains in the safe
state if a login to the controller takes place and variable values are
displayed in CODESYS Safety. Only a writing service such as the
forcing of a value causes the controller to switch to debug mode.

Although the state of a non-loaded application is
likewise safe, this is not designated a safe mode

If there is a boot application on the safety controller, this boot appli-
cation starts up when the controller starts and the controller is in
safe operating mode.
If the controller is forced to switch from the safe to the unsafe state,
the developer must confirm the switch to the unsafe state.

Fig. 87: Example: Dialog when changing to unsafe mode

For notes, see Ä Chapter 7.5.2 “Debug mode and organizational
safety” on page 161.

Application state
The safety controller is always in the unsafe state if the application
is loaded to the controller with a download (see Ä Chapter 7.3
“Log in to the controller and switch it to debug mode” on page 152).
Debugging and start/stop can be performed on the controller in this
application state.

Application generation and online mode
Operating modes > Operating state and application state

17.07.2017 159

Whether the safety controller is in the safe or unsafe state and
whether the application is in the stop or run state is displayed in the
CODESYS general status line at the bottom edge of the window.

The status of the active application is displayed
irrespective of the opened editors.

Examples of information displayed in the bottom status line in
online mode

Fig. 88: Left: States of the safety application. Right: States of the
safety controller.

States of the safety application:
n “RUN” , green background
n “STOP” , red background: The application is paused.
n “ENDED” , red background: The application has been ended

due to a runtime error.
In the logged-in state, the state of the safety application is also dis-
played in the project tree next to the active safety application.
States of the safety controller:
n “TELEACCESS” , gray background

Access to the safety controller via teleaccess
n “SAFE” , yellow background when the boot application is run-

ning.
n “UNSAFE (BA)” , red background:

Boot application in debug mode
n “UNSAFE (DL)” , red background:

Download application in debug mode
n “UNLOADED” , gray background:

The current application has been unloaded from the controller
(no more application status).

n “EXCEPTION” red background:
Indicates a system error under special circumstances if login
persists (the connection is usually interrupted immediately).

“Force active” is displayed in addition to the status of the safety
controller if values are currently forced.

Displaying the states of the safety
controller

Application generation and online mode
Operating modes > Operating state and application state

17.07.2017160

NOTICE!
Behind the state, the circling bar indicates that the
state is constantly being updated, except for the
"TELEACCESS" state. If it freezes, the status of
the S-PLC can already have changed further
without being indicated.

7.5.2 Debug mode and organizational safety
The following commands lead to a switch to debug mode:
Commands in the "Online" menu
n “Reset cold” (see Ä Chapter 7.6.5 “Debug commands: Start/

Stop and Reset application” on page 168)
Commands in the Debug menu
n “Start” (see Ä Chapter 7.6.5 “Debug commands: Start/Stop

and Reset application” on page 168)
n “Stop” (see Ä Chapter 7.6.5 “Debug commands: Start/Stop

and Reset application” on page 168)
n “Write values” (see Ä Chapter 7.6.4 “Debug commands:

Write/Force” on page 166)
n “Force values” (see Ä Chapter 7.6.4 “Debug commands:

Write/Force” on page 166)
n “Cancel forcing for all values” (see Ä Chapter 7.6.4 “Debug

commands: Write/Force” on page 166)
The “Start” command in the “Debug” menu can only be executed
in debug mode if the application is in the stop state.

DANGER!
Each time when switching from the safe to the
unsafe state of the safety controller the user must
ensure that the organizational safety of the plant is
guaranteed.
For a network, there are the following possibilities:
– Protect all network components organization-

ally
– Separate the network physically so that you

have to debug and protect only a small part of
the network.

Switching to debug mode

Application generation and online mode
Operating modes > Debug mode and organizational safety

17.07.2017 161

DANGER!
In debug mode the safety controller is always in
the unsafe state. It is the developers responsibility
to ensure the safety of the plant by means of
organizational measures. These measures must
start before the release of the debug services and
must be maintained until one of the following
events occurs:
- The resetting of the debug release is confirmed
following an online command
- The safe status is constantly and dynamically dis-
played in the development system
- Reset of the safety controller
If safety network variables are used in the network
for cross-communication, then the measures must
remain in effect until the last safety controller has
exited debug mode. The feedback from safety con-
troller 1 is not enough.

DANGER!
For the release of debug services or the execution
of commands in the case of multi-PLC projects, the
developer must confirm the device name in a
dialog so that the command is sent to the correct
controller.

The return of a safety controller from the unsafe to the safe state
can take place by
n Restarting the boot application (“Restart” command on the

“Safety Online Information” tab of the safety controller, see
Ä “Restart of the boot application” on page 157).

n Logging out from the safety controller (“Logout” command in
the “Online” menu, see Ä “Logout” on page 154).

n Switching the safety controller off and then on again
n Reset origin of boot application (“Reset origin” command on

the “Safety Online Information” tab of the safety controller, see
Ä Further information on page 237).

n Delete of boot application (“Delete” command on the “Safety
Online Information” tab of the safety controller, see Ä “Deleting
the boot application” on page 232).

7.5.3 Exiting the application
The running safety application can be exited by means of different
operations in safe mode and debug mode:

Writing to several PLCs

Return to the safe state

Application generation and online mode
Operating modes > Exiting the application

17.07.2017162

n Logging in with download and switching to debug mode
(Ä Chapter 7.3 “Log in to the controller and switch it to debug
mode” on page 152)

n Restarting the boot application (Ä Chapter 7.4 “Creation and
restart of the boot application” on page 156)

n Reset to firmware
n Firmware update
n Runtime errors in the application

In all of these cases, a final output image is generated with all
output channels (digital and analog) of safe field devices being set
to fail-safe values according to protocol and marked in the protocol
as fail-safe. All output channels (digital and analog) of non-safe
field devices are reset to zero in this output mapping.

7.6 Monitoring and debugging
7.6.1 Monitoring

During monitoring in online mode, as long as a login to the applica-
tion exists, the online status and the monitored values of visible
variables are taken cyclically from the controller and displayed in
the implementation and declaration section of the respective
object.
Monitoring functions both in safe mode and in debug mode (with
reading access)

CAUTION!
The displayed monitoring value for a variable is a
value that this variable had on the connected con-
troller. This value is not necessarily the current
value, i.e. the value can have already changed
again on the controller. The monitoring display in
the safety editor in online mode is suitable only for
the proof that a certain value or state was once
adopted. All values displayed simultaneously in a
safety editor in online mode were also present in
the displayed combination on the safety controller
at the end of an application cycle (cycle-consistent
monitoring). Therefore the monitoring display can
be used as an auxiliary function in order to verify
the branch coverage of tests on the basis of flag
variables (see Ä “Proof of the branch coverage ”
on page 194)

Monitoring

Application generation and online mode
Monitoring and debugging > Monitoring

17.07.2017 163

CAUTION!
The objects of the safety application may not be
modified as long as the login exists. You can tell
whether an object has been changed in a pinned
application by the display “In Work” in the online
view of the editor.

The monitoring of the variables in the declaration window and in
the implementation window of the POU is qualified and is suitable
for the verification.

CAUTION!
Monitoring in the monitoring window (watch
window) is not qualified and is thus unsuitable for
the verification of a safety application!

For detailed information on the monitoring window,
refer to the CODESYS Standard online help.

Monitoring also serves the purpose of runtime error diagnosis. In
the case of an execution error the application is terminated; how-
ever, it is not unloaded. The developer can log in to the application
and monitor the current values of the variables at the time of the
execution error.

7.6.2 Flow control
When flow control is activated, the values displayed in the FBD
implementation part are no longer values from the end of the cycle.
Instead, the following is displayed in the implementation part of the
safety FBD editor: the values of variables, the results of calls from
operators, and the operators at the respective location and at the
respective processing time. In the meanwhile, “Flow control
activated” is displayed in the status bar.
For detailed information, refer to the CODESYS Safety online help.

NOTICE!
Flow control is not qualified and is thus unsuitable
for the verification of a safety application!

Monitoring window

Monitoring in the case of runtime
errors of the application

Application generation and online mode
Monitoring and debugging > Flow control

17.07.2017164

The requirement for flow control functionality is a
current safety controller. For older firmware ver-
sion, it may be necessary to update the firmware,
see Ä Chapter 12.6.2 “Installing the firmware
update” on page 235.

7.6.3 Debug mode of the safety controller

NOTICE!
During the debugging operation (debug mode) the
safety controller is always in non-safe mode.

Debugging can be done on the safety controller on the download
application and on the boot application. The purpose of debugging
is to recognise and find errors in the safety application.

The developer must be logged in to the safety con-
troller from the project in order to debug the safety
application!

DANGER!
The developer is responsible for ensuring the
safety of the plant/machine during the entire period
in which the safety controller is in debug mode
(non-safe mode).

DANGER!
If the developer wishes to debug the safety appli-
cation with writing services while the safety con-
troller is installed in the machine, he must ensure
at the machine/plant that no person is in the
danger area.
These measures must begin before the release of
the debug services and must be maintained
– until the confirmation is received after an online

command that the debug command release
has been reset,
or

– until the status display of the "safe" status is
constantly and dynamically displayed in the
PS,
or

– until the controller is reset

Application generation and online mode
Monitoring and debugging > Debug mode of the safety controller

17.07.2017 165

If the boot application is running, writing debug services (including
download to a temporary application, but without stop) are exe-
cuted only if the developer has explicitly released the use of debug
services (i.e. debug mode) (see Ä Chapter 7.5.2 “Debug mode
and organizational safety” on page 161). This ensures that an
issued release is valid only for one debug session and that it is no
longer valid after a logout.

7.6.4 Debug commands: Write/Force

DANGER!
The execution of writing debug services changes
the current behavior of the application that is pres-
ently running!

If the controller in safe mode and the “Write values” or “Force
values” or “Reset cold” commands are activated, then the con-
troller enters the “DEBUG (BA) state, i.e. it enters debug mode
(non-safe mode)” .
“Write” and “Force” work the same way in CODESYS Safety as in
CODESYS standard. Therefore, please refer to the CODESYS
online help.

Writing debug services can be used without limita-
tion during the development of the safety applica-
tion.

NOTICE!
Writing debug services may not be used for func-
tional tests of the safety application. For excep-
tions, see Ä Chapter 9.4.1 “Dynamic verification
and validation” on page 191.

The effect of the “Write values” debug command is that, once only
before the application cycle, all values of the active safety applica-
tion that have been prepared for writing are written at once from all
editors of variable declarations and all monitoring windows to the
controller.

Forcing works in a similar way to writing, except that in this case
values that have been prepared for writing are stored in the con-
troller.
Before and after each cycle the values of the corresponding varia-
bles are overwritten (forced) with the values from the write list, until
forcing is cancelled or the controller exits the debug mode.

Write values

Force values

Application generation and online mode
Monitoring and debugging > Debug commands: Write/Force

17.07.2017166

Indicated in state as “Force active” (see Ä “Displaying the states
of the safety controller” on page 160).

Since the variables are set to the forced values
only at the beginning and end of each cycle,

- the variables can be overwritten by other values
during the cycle

- it is possible to intervene only in the original value
of a calculation and it does not make sense to
force intermediate variables

- only the outputs of the application at the end of
the cycle are overwritten with the forced values

Values are prepared in CODESYS (see Fig. 89, Fig. 90, and
Fig. 91).
Active forcing for this variable can be cancelled via the “Prepare
value” dialog (Fig. 90).

Fig. 89: Declaration part of the POU with additional columns: value
and prepared value

Fig. 90: Dialog for preparing values for Write/Force

Application generation and online mode
Monitoring and debugging > Debug commands: Write/Force

17.07.2017 167

Fig. 91: Example: Variables Var1 with current value 0 and prepared
value 3

This debug command terminates forcing in the safety controller.
The markings of the forced variables are reset on the user inter-
face.

7.6.5 Debug commands: Start/Stop and Reset application

The “Start” and “Stop” commands of the “Debug” category are
available only if the developer is logged in to the controller from the
project.
With the “Start” debug command the active application on the
safety controller starts and places it in the “RUN” state. “Stop”
stops the active application on the safety controller; the application
is no longer run through; the stacks of the safe protocols continue
to be executed.

If the boot application running on the safety con-
troller in safe mode is stopped with the “Stop”
command, the safety controller enters debug
mode.

In the STOP state, all output values to field devices (digital and
analog, safe and unsafe) are automatically set to zero, and in the
case of safe field devices they are activated as failsafe values
when the safety protocol supports this. For safe output modules,
this forces the machine into safe state. (This generally means that
they halt the machine.) The output values of a stopped NVL sender
remains at the last value before stopping and are still sent to its
NVL receiver.
Moreover, in the STOP state, valid input values from field devices
and NVL senders are still copied to the mapped variables.

Cancel forcing for all values

Program sequence control: Start/
Stop and Reset application

Application generation and online mode
Monitoring and debugging > Debug commands: Start/Stop and Reset application

17.07.2017168

CAUTION!
With “Start” , the current values from the applica-
tion arrive again immediately at the field devices
and the machine possibly continues running
(depending on the state of the application). (Dif-
ferent from a communication error that usually has
to be acknowledged before values are transmitted
again.)

Refer to the CODESYS Standard online help for
the “Start” and “Stop” debug commands.

The “Reset cold” command in the “Online” menu is only available
in online mode. Through activation of this command the application
enters or, as the case may be, remains in the “STOP” state and is
reset and re-initialized (equivalent to the initialization after loading
the application).

7.7 Online information from the safety controller
The safety controller provides the user with a range of information
for diagnostic and debugging purposes. This information is stored
in an editor on various selectable tabs. The editor can be opened
by double-clicking the safety controller in the project tree or by
selecting the safety controller in the project tree and activating the
“Edit object” command in the context menu.
The editor contains the following tabs:
n “Communication settings”

See Ä Chapter 7.2.1 “Communication settings general infor-
mation” on page 149

n “Log”
See Ä Chapter 12.3.3 “Log: Diagnosis of system and runtime
errors” on page 227

n “Safety Online Information”
See Ä Chapter 12.3.2 “Information on firmware and boot appli-
cation ” on page 226

n “Status”
See Ä Chapter 12.3.4 “Status: Communication diagnosis”
on page 229

n “Information”
Display of general information (see CODESYS online help)

Reset application

Application generation and online mode
Online information from the safety controller

17.07.2017 169

Fig. 92: Editor of the safety controller, tab 'Communication'

7.8 Coordination with the Main Controller

NOTICE!
If physical devices and variables of the main con-
troller are applied (as a logical I/O object) in the
safety controller, then the application must be
downloaded to the main controller and the safety
application must be downloaded to the safety con-
troller. This is necessary to provide the current
values to the physical devices, the GVLs for logical
exchange of the main controller, and the logical
I/Os of the safety controller.

NOTICE!
If network variables are used in the safety con-
troller, then the application must be downloaded to
the main controller and the safety and the safety
application must be downloaded to the safety con-
troller. If the state of the application on the con-
nected safety controller is no longer up to date,
then the application of the connected main con-
troller and the safety application of the connected
safety controller must both be downloaded. The
network variables are provided with current values
only if the four applications are consistent on both
safety controllers and both main controllers.

Consistency of applications

Application generation and online mode
Coordination with the Main Controller

17.07.2017170

If the physical devices and the exchange variables are configured
differently from the corresponding objects of the safety application,
then this is indicated by CODESYS Standard with the warning
symbol for configuration errors in the project tree adjacent to the
safety controller.
The configuration differences relate to the number, ID, or I/O size
of the I/O modules and the exchange variables for the standard
and safety controllers.
For bus systems where the safe configuration is transmitted by
means of the standard configuration, the different parameteriza-
tions of an I/O module are displayed as a configuration difference.

The way in which configuration differences are dis-
played, reported, and logged is described in the
online help in section "Coordination with the Main
Controller".

NOTICE!
By interrupting the main application (for example
by switching off or by the online commands “Stop” ,
“Reset” , “Delete boot application” , Download), or
when the update of the main application leads to a
mismatch of the I/O list with the safety controller,
the connection of the safety controller with its field
devices and other safety controllers is generally
interrupted (*). This leads to fail-safe responses
after the monitoring times of the connections have
expired:
– The field devices bring the machinery or the

machine part of the safety controller to the
"safe state" (generally meaning the field
devices stop it).

– The input values of the safety application and
its receiver NVLs take fail-safe values.

– The variables exchanged with the safety appli-
cation take fail-safe values in the other receiver
safety applications. This can lead to more fail-
safe responses in other machine parts.

(*) Depending on the fieldbus and implementation
of its driver, it is also possible for the communica-
tion to continue even without the main application.

Configuration differences

Interruption by the main controller

Application generation and online mode
Coordination with the Main Controller

17.07.2017 171

If the main application resumes running afterwards
(for example after the “Run” online command),
then the communication error must generally be
acknowledged before the fail-safe responses of the
safe output devices and the other safety controllers
are withdrawn and the machinery can restart.

If none of the current values can be exchanged as long as the
application has not been terminated, then the following applies to
the variable exchange:
Replacement values for exchange variables
n If the developer stops the safety application, or if the applica-

tion of the main controller is not running, then
– The values of the standard controller are transmitted, even

if the standard controller was stopped.
– Except in the case of an exchange mismatch, the values of

the other application (variable “...Out”) continue to be
copied to the application's own variables (variable “...In”).

n If the variable exchange is stopped due to a mismatch, then
zero values are written to the mapped read variables of the
safety application (logical exchange object “...In”).

n If the safety application is terminated (e.g., by downloading a
new application), then all write variables (variable “...Out”) of
the other application are set to zero again first.

Variable exchange with the main
controller

Application generation and online mode
Coordination with the Main Controller

17.07.2017172

8 Pinning the software

The developer must take preparatory measures for the verification
of the safety application. An important aspect here is to define the
version of the safety application intended for the verification and
thus to ensure that only precisely this version of the safety applica-
tion is used for the verification, validation and subsequent accept-
ance.
CODESYS Safety provides the pinning function especially for this.

NOTICE!
Before the programmed or modified safety applica-
tion is verified, it must be re-pinned. Verification
and acceptance may only be carried out with
pinned applications. No object of the application
may have the status "In Work". The check for "In
Work" must take place before the verification and
before the acceptance.

Pinning means that a reference point to the current version of a
safety application is set that identifies the specific version of the
safety application and the associated objects. By means of the pin
it is possible to identify a certain version of the application in the
project, of an object in the editor and of a boot application on the
safety controller. In addition the verifier, on the basis of the pin, can
recognize at any time changes in the application structure, in the
contents of its objects and in the library function blocks referred to.

A specific version is made identifiable by setting a
pin; however, no copy of the specific version is
generated when doing this!

The pin functions can be found in the editor of the application
object. To this end the safety application object is selected in the
project tree and opened using the “Edit object” context menu com-
mand. The “Objects” tab shows the object list, which displays the
version and the CRC of the objects of the current project and of the
pinned project.
A detailed description of the information and the object list can be
found in Ä “Editor of the safety application object with object list”
on page 56)

Preparatory measure for the verifi-
cation

What is pinning?

Object list

Pinning the software

17.07.2017 173

Fig. 93: Object list of a safety application that is not pinned yet

Fig. 94: Object list of a pinned safety application

Fig. 95: Object list of a pinned safety application with changed
POUBa of the current application

Using the “Pin project” command, a pin is set on the current exe-
cution version of the listed objects, as a result of which not the con-
tents, but rather the checksum and the version are noted. A pin
name can be entered. The revision number of the pin is increased
automatically by 1 with each "new" pinning.

Pinning a safety application

Pinning the software

17.07.2017174

Using the “Clear pin” command, the current pin is deleted and all
objects are once again “In work” .

The pinned version of the safety application encompasses:
n Scope of the safety application:

– Which safety objects belong to the application
– Which library function blocks the application requires

n Execution-relevant version of the objects and library function
blocks in the scope of the application:
– Code of each object of the application
– Configuration and device parameter of each logical I/O

object of the application
– Interface of the external implementation of each library

function block used
– Version designations of the objects

The execution-relevant version does not include the object com-
ments. These are not pinned and can thus be updated at the end
and during the verification!
The verifier identifies a pinned version by a pin identifier, which is
displayed at different points in the development system. The pin
identifier contains:
n Name
n Revision counter, which is increased automatically by 1 when

pinning.
n CRC: A CRC32 of the pinned execution version
In addition the time of pinning is recorded. However, this is not part
of the pin identifier.

The application pin information for a safety application is displayed
in the editor of the safety application object.
The safety application pin information consists of:
n “Name”

Name of the pin
n “Revision”
n “CRC”

The CRC is created for the entire pinned application.
n “Last change”

Time of the pin generation
In addition, the object list of the safety application object shows
how the current project version differs from the current pinned ver-
sion of the application. The following differences are shown:
n New objects
n Deleted objects
n Objects modified with regard to code, configuration or parame-

ters
n New function blocks drawn from libraries

Display of the pin information and
its deviations

Pinning the software

17.07.2017 175

n Library function blocks no longer drawn
n Library function blocks differing with regard to interface or

implementation version
Differences are clearly marked in color so that the verifier can
easily recognize them:
n Green: New objects or function library blocks in the project
n Red: Change/difference in the contents of the object or device

parameter set or library function block
n Blue: Objects or library function blocks deleted from, or no

longer used in the project

If the safety application is pinned, then the comparison view con-
tains the pin information and in the project tree the node point

 and its child objects are marked with the symbol. The
“SafetyApp” node point is considered to be pinned if the object
and all its child objects correspond to the object version noted in
the pin. .
If the application has not yet been pinned or if the pin has been
deleted, then only the “In work” status appears in the top line and
in the project tree the node point and its child objects are
not marked. If a child object of the safety application is “In work” ,
then the safety application is also “In work” .
The information about the pin or “In work” is shown in the object
view and in the printout of the project.

The setting of a pin allows execution-relevant
changes to be recognized during and after the veri-
fication. In setting a pin, the version is made identi-
fiable with regard to the execution-relevant parts
for verification activities and acceptance.

Pinning in the project and in the
object view

Verification procedure

Pinning the software

17.07.2017176

NOTICE!
– The version is to be made identifiable by

means of a pin before verification activities and
acceptance.

– The developer must check during reviews,
white box test development and test execution
that the present application has been pinned,
that the displayed pin identifier represents the
current application to be verified and that no
deviation of the project version from the pinned
version is reported.

– Before making changes to an accepted appli-
cation or one that is in verification, he must
check that, in the initial state of his change, the
present application is pinned, that the correct
pin identifier is displayed and that no deviations
of the project version from the pinned version
are reported.

Pinning the software

17.07.2017 177

Pinning the software

17.07.2017178

9 Software verification

9.1 Introduction
The process of software verification proves that the specification
and the programming guidelines are fulfilled and thus verified. The
software verification takes place via a combination of static and
dynamic verification methods (tool-based checks, code review, and
tests).
The software verification is followed by the validation of the pro-
grammed safety functions in the assembled machine as a further
verification step.
Both are prerequisites for the acceptance of the machinery and the
safety application.
As a prerequisite the user must have specified in earlier develop-
ment phases how he would like the software application to behave
(software specification) and what his desired rules of programming
and commenting (programming guidelines) are.

NOTICE!
Verify the correctness of the CODESYS installation
according to notice Installation1, notice Installa-
tion2, notice Installation3, and notice Installation4
(see Ä Chapter 2.6 “Correct version and configu-
ration of the CODESYS Safety development
system” on page 13).

NOTICE!
Verify that the versions of the library function
blocks used by your application correspond to the
versions described in this document. You can
determine the version of a library function block
employed in the “Objects” tab of the Safety appli-
cation object editor (see Ä “Editor of the safety
application object with object list” on page 56). For
their names, please refer to section Ä Chapter
15.1.2 “Applicative libraries” on page 267. (In the
case of library function blocks from other manufac-
turers the version must be checked against the
version described in the respective accompanying
documentation.)

Check R1 (Installation)

Check R2 (BibFB versions)

Software verification
Introduction

17.07.2017 179

NOTICE!
The library repository and the library manager are
not suitable for the verification of the library blocks
used in the safety application during the verifica-
tion and the acceptance. The verification of the
execution-relevant statuses must take place via
the object list, see Ä Chapter 8 “Pinning the soft-
ware” on page 173. For acceptance documenta-
tion, see Ä Chapter 10.1 “Introduction ”
on page 199.

NOTICE!
Verification and acceptance may only be carried
out with pinned safety applications. No object of
the application may have the status "In Work" in
the object tree and in the views.

NOTICE!
The CODESYS project navigator is not suitable
for the verification and acceptance of a safety
application. The editor of the safety application
object must be used to verify which objects belong
to the safety application (see Ä “Editor of the
safety application object with object list”
on page 56).

NOTICE!
The magnification tool () in the safety FBD
editor shall not be used for verification and accept-
ance.

NOTICE!
The CODESYS Standard project comparison is
not suitable for the verification and acceptance of
changes compared to a previously verified/
accepted safety application. It can only be used as
an auxiliary function in order to open the compar-
ison view of the pinned version of the application.
The comparison editor is opened by a double click
the safety application object in the standard project
comparison.

Check R3 (Pinned)

Software verification
Introduction

17.07.2017180

In order to simplify and thus to accelerate the entire process of ver-
ification and validation, CODESYS Safety provides the already
validated and certified PLCopen blocks and the function blocks
from the SafetyStandard library.

9.2 Requirements of verification/validation
9.2.1 PL-e safety applications

For safety applications with PL-e, activities for verification and vali-
dation are to be performed in accordance with the standard, e.g.:
n Verification by means of control and data flow analysis
n Validation of functional performances with black box tests.
n Validation of the performance (e.g. temporal of performance)

with black box tests.
n Recommendation: Test case execution on the basis of limit

value analyses
n I/O tests must ensure the correct use of the safety-related sig-

nals.
n After changes in the safety application, it must be ascertained

with the aid of an influence analysis that the specification is ful-
filled.

9.2.2 SIL3 safety applications
For safety applications according to SIL3 the software must be
checked in accordance with the standard in order to ascertain
whether it conforms to the specified design, the programming
guidelines and the requirements of the safety planning. For safety
applications according to SIL3, verification and validation include
structural tests of the application software as white box tests, func-
tional tests of the application program as black box tests and inter-
face tests as grey box tests (interaction with safety controller and
user-specific hardware configuration). Activities for verification and
validation must be carried out in accordance with the standard and
tests should be the main verification method used. This includes
among other things:
n Checking the I/O configuration by check, test or simulation
n Suitable functional tests of all software modules by check, test

or simulation
n Suitable tests of the modules with

– branch coverage
– tests with limit data
– Checking the implementation of the processes, including

relevant synchronisation conditions

Verification, validation and accept-
ance for safety applications
according to PL-e

Verification, validation and accept-
ance for safety applications
according to SIL3

Software verification
Requirements of verification/validation > SIL3 safety applications

17.07.2017 181

9.3 Static verification
9.3.1 Static verification

The static verification encompasses checking conformity to
n Coding or programming guidelines

These guidelines are checked partly automatically by the
checker (see Ä Chapter 9.3.3 “Automatic checking of the pro-
gramming guidelines” on page 183) and partly by review (see
Ä Chapter 9.3.4 “Manual checking of the programming guide-
lines” on page 184).

n Documentation of used POUs
n Available specifications

This check takes place by means of a review.
n Planning the overall system (Ä Chapter 4 “Planning the

overall system” on page 29)

The desired check options can be set in the safety
application object (see Ä Chapter 9.3.3 “Automatic
checking of the programming guidelines”
on page 183).

During the review the version of an object can be
verified by comparison of the displayed pin identi-
fier with the demanded pin identifier.

NOTICE!
In the case of multi-PLC projects, it must be veri-
fied throughout the entire static verification that
each object belongs to the correct safety controller
by checking the pin identifier in the object view of
each object of the safety application.

9.3.2 Device configuration and communication interface
In a verification against to the system plan, the verifier checks that
the safety addresses, connection IDs, and watchdog times are
configured as planned.
The verifier must check that the receiver network variable lists are
linked to the correct sender network variable lists.

Software verification
Static verification > Device configuration and communication interface

17.07.2017182

NOTICE!
When checking that the NVL configuration links the
correct sender/receiver network variable lists, all
safety addresses must be checked that are dis-
played in the network variable lists (receiver) and
network variable lists (sender), and are docu-
mented for a controller or machinery.

NOTICE!
In the static verification against the specification a
check must be made as to whether the device
descriptions of the field devices used in the
CODESYS Safety project correspond to the field
devices foreseen in the machine hardware specifi-
cation.

The following should thereby be checked:
n The correct description for the fail-safety configuration
n The correct description for the device parameterization
The verifier should proceed as follows:
1. Open each logical I/O that is listed in the pinned object list in

the application editor.
Care must be taken that all devices are checked.

2. For each logical I/O the pin identifier (“I/O mapping” page),
check the entry against the machinery (“Information” tab)
and Originator info. (current CODESYS Safety version).

3. For each logical I/O check the “Safe configuration” tab (if
existing) and pin identifier, DeviceInfo and Orginator info.
(current CODESYS Safety version).

9.3.3 Automatic checking of the programming guidelines

The automatic checking of the programming guide-
lines takes place explicitly via the “Build” com-
mand in the Create menu and automatically each
time a download application is generated (“Login”
command in the Online menu) or each time a boot
application is generated (“Create boot application”
command in the Online menu).

For automatically tested programming guidelines, see section "Pro-
gramming" Ä Chapter 6.2.6 “Automatically checked programming
guidelines” on page 106

Check R4 (Safety addresses)

Check R5 (Device descriptions)

Settings for automatic checking of
programming guidelines

Software verification
Static verification > Automatic checking of the programming guidelines

17.07.2017 183

NOTICE!
The verifier must check that the required checker
options are set in the programming guidelines. The
pin detection of the application status to be verified
must be located via the settings.
Either the option “Treat warnings as errors” is acti-
vated, or the application check must be started and
any issued warnings evaluated.

All optional programming rules and optional limitations selected in
this dialog are checked on translating the safety application. A
warning appears in the message view for each violation.

There are numerous further, non-optional rules which are checked
in every case. These are listed in the CODESYS Safety online help
as explanations for the individual language elements in Ä Chapter
6 “Programming” on page 89 and the "Error messages" section.

9.3.4 Manual checking of the programming guidelines
It is the responsibility and decision of verifier to carry out manual
checking of programming guidelines.
The checker optionally checks whether comments exist for the
application and the POUs. The fulfillment of the selected program-
ming guidelines by these or the other comments must be verified
manually.

NOTICE!
All manual programming rules from Ä Chapter 6
“Programming” on page 89 must be verified man-
ually: Ä “Rule P1 (Documentation)” on page 94,
Ä “Rule P2 (Names)” on page 95, Ä “Rule P3
(Check:Plausible)” on page 97, Ä “Rule P8 (check:
1oo1)” on page 132, Ä “Rule P9 (Check:Devices)”
on page 134, Ä “Rule P11 (NvlSend)”
on page 139.

NOTICE!
In Extended Level, POUs must also be checked:
Ä “Rule P4 (Check:Num)” on page 97, Ä “Rule P5
(NOT/XOR)” on page 124,Ä “Rule P6 (Jump)”
on page 129, Ä “Rule P7 (Return)” on page 129,
Ä “Rule P12 (Operators)” on page 125, Ä “Rule
P13 (Bitcodes)” on page 123.

Check R6 (Auto-checks)

Check R7 (General rules)

Check R8 (Extended rules)

Software verification
Static verification > Manual checking of the programming guidelines

17.07.2017184

Conditional jumps should be checked to ensure that they are used
in accordance with the PLCopen rules only for state machines.
Conditional returns should be checked to ensure that they are used
in accordance with the PLCopen rules only as error exits.

It is recommended when checking for state
machines to mark the networks that form a branch
in the network comment in order to be able to find
them again for the later "branch coverage" step.

The check of Extended Level rules (Ä “Rule P5 (NOT/XOR)”
on page 124, Ä “Rule P6 (Jump)” on page 129, Ä “Rule P7
(Return)” on page 129, Ä “Rule P10 (analog fail-safe)”
on page 136) requires a data flow analysis or a control flow anal-
ysis. These are supported by the safety cross-reference list.
Please note the information in Ä Chapter 9.3.6.2 “Using cross-ref-
erence list and go to definition” on page 186.

9.3.5 Manual check of POU use
If the documentation or specification of a function block contains
restrictions or special requirements for the use or parameterization
of the function block, then the adherence to these restrictions or
requirements must be checked manually during the verification.

NOTICE!
The FBs must be checked for use according to
their documentation. See the general rules for
using PLCopen-compliant FBs in Ä Chapter 6.2.5
“Rules for using PLCopen-compliant function
blocks” on page 105 and specific rules in
Ä Chapter 15.2 “Specific Safety Notes for Applica-
tive Library Function Blocks” on page 271.

For example, in an Extended Level, you have to check that the
TIME inputs of PLCopen POUs retain their values f0or the calls.
Note: for Lib5 (TIME inputs), see Ä Chapter 15.2 “Specific Safety
Notes for Applicative Library Function Blocks” on page 271.

9.3.6 Application-specific checks
9.3.6.1 Check against the specification

The check against the specification of the safety application is
accomplished by checking the interfaces and by the analysis of the
control and data flow.

Check R9 (use of FBs)

Software verification
Static verification > Application-specific checks

17.07.2017 185

NOTICE!
The parameterization of the used POUs and
devices must be verified. The monitoring times,
discrepancy times, auto-acknowledgment, etc.
must be reasonable and set according to the spec-
ification.

NOTICE!
It has to be verified which inputs affect which out-
puts. Only the inputs that are required by the spec-
ification must all affect one output. (see Ä Chapter
9.3.6.5 “Data flow analysis” on page 189)

9.3.6.2 Using cross-reference list and go to definition
For supporting the analysis of the control flow and the data flow in
a safety application, CODESYS Safety provides the “Safety cross-
reference list” view and the command “Go to definition” . For
detailed information about these functionalities, refer to the online
help.

For cross-references in safety applications, you
must use the “Safety cross-reference list” view.
(Safety application are not displayed in the “Cross-
reference list” .)

NOTICE!
The “Safety cross-reference list” and the “Go to
definition” command are possibly no longer suit-
able for the control flow and data flow analysis if
additional packages were installed in CODESYS
(see Ä “Notice Installation2” on page 13).

Check R10 (Parameter)

Check R11 (I/O effect)

Software verification
Static verification > Application-specific checks

17.07.2017186

CAUTION!
Using of the safety cross reference list
Please note the following when using the safety
cross-reference list for analyzing the control flow or
data flow of the safety application:
1. Correct naming format. Only "unqualified"
identifiers may be entered in the “Name” field.
This means that a search is made for a global vari-
able by entering "<variable name>", but not by
entering "<GVL name>.<variable name>". A
search is made for FB inputs and FB outputs by
entering "<input/output name>"; the instance-
related search by means of "<FB instance
name>.<input/output name>" is not supported.
2. Correctly finalizing the entry / Starting the
search. After selecting the scope "-- all --" and
typing the identifier in the “Name” field, you must
finalize these entries by pressing the [Enter] key.
The [Enter] key activates the listing of all cross-ref-
erences in the table. Using the search button ()
searches all occurrence locations in the “Active
application” scope only.

9.3.6.3 Global control flow analysis
In the control flow analysis the program sequence, i.e. the pro-
cessing sequence of a program and its function blocks, is checked.

The control flow analysis is demanded by
PLCopen for the verification of a safety application.

In CODESYS Safety the control flow analysis is already simplified
by the fact that jumps are permitted only in the Extended Level,
and in turn only forward jumps are allowed here. For an additional
control flow analysis for the Extended Level see Ä Chapter 9.3.6.4
“Local control flow analysis in the Extended Level” on page 188.
The “Output cross-references” and “Go to definition” functions are
available for the execution of the control flow analysis. The “Go to
definition” function is particularly suitable for this. For detailed
information about these functions, refer to the CODESYS Safety
online help.
Please note the information in Ä Chapter 9.3.6.2 “Using cross-ref-
erence list and go to definition” on page 186.

Control flow analysis

Software verification
Static verification > Application-specific checks

17.07.2017 187

The verifier wants to
n Open the called program from a task: The line with the corre-

sponding program call must be selected in the task editor and
the “Go to definition” command must be activated.

n Switch from a POU to a called function block: Select the func-
tion block box in the implementation part of the POU and acti-
vate the “Go to definition” command.

The verifier wants to
n Find all call occurrences for a POU (program or function block):

Open safety cross reference list (“View” menu, “Safety cross
reference list” selection), and specify the POU name in the
“Name” drop-down list, and press [Enter] to end. All places of
use of the POU are listed. By double-clicking an element in the
safety cross-reference list, the element can be opened and if
necessary identified as a call.

n Find all calls for an FB instance: Open safety cross reference
list (“View” menu, “Safety cross reference list” selection), and
specify the FB instance name in the “Name” drop-down list,
and press [Enter] to end. All places of use of the instance are
listed. By double-clicking an element in the safety cross-refer-
ence list, the element can be opened and if necessary identi-
fied as a call.

NOTICE!
The declaration of a POU itself is not listed as a
place of use in the safety cross-reference list.

9.3.6.4 Local control flow analysis in the Extended Level
Conditional jumps (only forward jumps are permitted) and returns
are available only for POUs in the Extended Level. If conditional
jumps and returns are used, an additional control flow analysis of
the jumps must be carried out for these Extended POUs. The fol-
lowing functions are available for the control flow analysis:
n Switch from a conditional jump to a jump target: Select jump

and click “Go to definition” .
n Find all jumps from a jump target that lead to the jump target:

Select the jump target and click “View
è Safety cross reference list”. By double-clicking a jump listed
in the safety cross-reference list you can switch to the corre-
sponding point.

Please note the information in Ä Chapter 9.3.6.2 “Using cross-ref-
erence list and go to definition” on page 186.

Control flow analysis with "Go to
definition"

Control flow analysis with cross
reference list

Software verification
Static verification > Application-specific checks

17.07.2017188

9.3.6.5 Data flow analysis
The data flow analysis tests and displays where and how inputs/
outputs and variables are used in a CODESYS Safety project.
The data flow analysis demanded by the PLCopen for verification
is facilitated in CODESYS Safety by:
n Use of FBD
n No jumps and returns in the Basic Level
n Separation of safe and unsafe signals
n No global variables in function blocks
The data flow analysis is accomplished in particular with the aid of
the safety cross-reference list. In this list all positions in the project,
in linked libraries, or optionally in the current POU at which the var-
iable is used are listed. For detailed information about this function,
refer to the CODESYS Safety online help.
Please note the information in Ä Chapter 9.3.6.2 “Using cross-ref-
erence list and go to definition” on page 186.

1. Determining which variable an input acts on:
The variable is defined on “I/O mapping” tap of the logical
I/Os of the respective physical device, or the GVL for logical
exchange (double-click logical I/O in the project tree and
open the “I/O mapping” tab).

2. To determine the positions of the variables in the project:
Open the cross-reference list (“View
è Safety cross reference list”), enter the name of the vari-
able in the “Name” combo box, and finally press [Enter]. The
method of accessing the variable is listed in a column of the
safety cross-reference list. By double-clicking a line in the
cross-reference list, the verifier is taken to the corresponding
place in the implementation part of the POU if the access
method is “Read” or “Write” , or to the corresponding place
in the declaration part of the POU if the access method is
“Declaration” .

3. To determine the data flow of the variables within the POUs
in which they are used:
Check the data flow lines of the variables

4. Determine which output the variable is assigned to:
With the aid of the data flow lines and safety cross-reference
list

5. Determine whether the variable is assigned to other varia-
bles. In this case the data flow must also be checked for
these variables in accordance with steps 2 to 5.

Data flow analysis

Determination of what an input acts
on

Software verification
Static verification > Application-specific checks

17.07.2017 189

1. Determining the variable that acts on the output:
The variable is defined on “I/O mapping” tap of the logical
I/Os of the respective physical device, or the GVL for logical
exchange (double-click logical I/O in the project tree and
open the “I/O mapping” tab).

2. To determine the positions of the variables in the project:
Open the cross-reference list (“View
è Safety cross reference list”), enter the name of the vari-
able in the “Name” combo box, and finally press [Enter]. In
the safety cross-reference list all positions in the project or
optionally in the current POU at which the variable is used
are listed. The method of accessing the variable is listed in a
column of the safety cross-reference list. By double-clicking a
line in the safety cross-reference list, the verifier is taken to
the corresponding place in the implementation part of the
POU (if the access method is read or write), or to the corre-
sponding place in the declaration part of the POU (if the
access method is declaration).

3. Check the data flow of the variables in the POUs in which
they are used with the aid of the data flow lines.

4. Determine which inputs affect the variable: Using data flow
lines, safety cross reference list, and the “I/O mapping” tab
of the logical I/Os.

5. Determine whether the variables are assigned to other varia-
bles. In this case the data flow must also be checked for
these variables in accordance with steps 2 to 5.

Click “Show receivers” in the editor of the safety network
variable list (sender), or click “Show all associated receivers”
in the context menu of the safety network variable list
(sender) in the device tree.

Click the button in the editor of the safety network
variable list (receiver), or click “Go to sender” in the context
menu of the safety network variable list (receiver) in the
device tree.

Determining what acts on an output

Determine what a sender variable
affects.

Determine what acts on a receiver
variable.

Software verification
Static verification > Application-specific checks

17.07.2017190

9.4 Dynamic verification
9.4.1 Dynamic verification and validation

CAUTION!
Safety is the responsibility of the verifier during the
entire verification. This means that safety must be
established by organizational means even if the
safety controller signals "safe mode" or if the veri-
fier is not explicitly requested to establish organiza-
tional safety.

The dynamic verification is considerably simplified by the use of
the already certified function blocks from the PLCopen and Safe-
tyStandard libraries and the FBD programming language with the
Basic and Extended language subsets.
The dynamic verification is the checking of the program with the
aid of functional tests on the running application or in a test envi-
ronment specially developed for this purpose. This part of the veri-
fication can be carried out with white box and black box tests.

NOTICE!
Before performing the tests, the verifier must check
that it is connected to the correct controller and
that the boot application on the safety controller
has the correct pin identifier.

For online tests (Ä Chapter 9.4.2.1 “Monitoring of variables”
on page 192), the verifier checks the displayed device names and
the displayed pin information simply at login. For offline tests
(Ä Chapter 9.4.3 “Complete functional test of the application”
on page 195, Ä Chapter 9.4.4 “Verification in the finished machi-
nery” on page 196), the verifier can do the same (and logout
again), or the verifier checks the displayed device names and pin
information in the “Safety Online Information” tab

NOTICE!
During the entire test design the Pin identifier in
the object view of each object of the safety applica-
tion must be checked in order to verify that the
object belongs to the correct safety application and
that it has not changed since the login.

9.4.2 Online tests
The “Restart” command must be activated before each test.

Software verification
Dynamic verification > Online tests

17.07.2017 191

By activating the “Restart” command on the “Safety Online
Information” tab of the safety controller, the PLC is placed in the
relevant state for the next test, i.e. the boot application on the con-
troller starts.

9.4.2.1 Monitoring of variables

The monitoring of the variables in the declaration
window and implementation window of the objects
is qualified and is suitable for the verification of a
safety application of CODESYS Safety.

NOTICE!
Only confirmed connections can be used for verifi-
cation activities. Monitoring via teleaccess is not
qualified for verification.
To verify over an existing online connection
whether or not the connection is confirmed, set the
application to be verified as active. In the status
bar, “SAFE” with animated bars must be seen as
the operating mode (see Ä Chapter 7.5.1 “Oper-
ating state and application state” on page 158).

NOTICE!
Monitoring in the monitoring window is not qualified
and is thus unsuitable for the verification of a
safety application.

CAUTION!
If flow control is activated, then the values dis-
played in the implementation window are not
appropriate for the verification of a safety applica-
tion.
The implementation window indicates monitoring
values that are appropriate for verification by their
background color. They must not be green.

Monitoring of variables during
functional tests

Software verification
Dynamic verification > Online tests

17.07.2017192

CAUTION!
Verify that the displayed value for a variable that is
used for verification is the qualified value that
existed at the end of an application cycle (cycle-
consistent monitoring), and not the unqualified
value of the flow control.
Detection of the qualified values
– All displayed values in the declaration part of

an editor are values that were available at the
end of an application cycle and are therefore
qualified.

– In the implementation part of the FBD editor,
values that were available at the end of and
application cycle are not highlighted in green.
In addition, the “Online è Flow control” com-
mand must not be activated.

CAUTION!
The displayed monitoring value for a variable is a
value that this variable had on the connected con-
troller. This value is not necessarily the current
value, i.e. the value can have already changed
again on the controller. The monitoring display in
the safety editor in online mode is suitable only for
the proof that a certain value or state was once
adopted. All values displayed simultaneously in a
safety editor in online mode were also present in
the displayed combination on the safety controller
at the end of an application cycle (cycle-consistent
monitoring). Therefore the monitoring display can
be used as an auxiliary function in order to verify
the branch coverage of tests on the basis of flag
variables (see Ä “Proof of the branch coverage ”
on page 194)

The "write/force" function may be used only for tests of individual
function blocks and only for forcing a state that is not attainable via
black box, e.g. for testing the branch with the handling of illegal
values. If the value that has been written to the application is deci-
sive for the test evaluation, the verifier must verify by means of the
qualified monitoring, taking into consideration the notes in section
Ä Chapter 7.6.1 “Monitoring” on page 163, that the correct value
has been written to the variable.
Variable are written or forced for the qualified monitoring in func-
tional tests according to the following procedure:
1. “Login” command in the “Online” category
2. Open device view (project tree) with the “Devices” command

in the “View” category
3. Select instance by double-clicking the respective object

“SafetyApp” safety application

Software verification
Dynamic verification > Online tests

17.07.2017 193

4. Prepare the value for writing in the declaration part of the
POU or GVL by clicking the “Prepared value” column

5. Activate the “Write values” or “Force values” command in
the “Debug” category.

6. Look at the monitored variable values in the implementation
or declaration window of the respective object.

9.4.2.2 Online test in the Extended Level
When programming with CODESYS Safety, branches may occur
exclusively in Extended POUs by means of the jumps and returns
which are only permitted here. Proof of the branch coverage need
only be performed in POUs in the Extended Level with conditional
jumps and returns.
1. The program code to be verified is available.
2. The list of the branches of the POU from the control flow

analysis is available.
3. Insert a new network in each branch Z in the POU and

therein assign the value TRUE to a Boolean variable bZ
(recently declared via Auto-declare, with initial value FALSE).

4. For each test case for the POU: “Restart” the boot applica-
tion, test run, if variable bZ = TRUE, check off the branch Z in
the branch list.

5. After running all tests, all branches in the list must be
checked off.

The flag variables must be manually removed from the declaration
and implementation windows after the proof of the branch cov-
erage. They can be also commented-out, but the corresponding
warning should then be deactivated.

NOTICE!
Functional tests that were accomplished with
instrumentation (flags) must be repeated after
removal of the instrumentation on commenting-out!

NOTICE!
The display of variables in a monitoring window is
not suitable for the verification of a safety applica-
tion!

If the limiting values of a POU in the Extended level are to be
checked, then the necessary means are made available by the
provided language subset.

Proof of the branch coverage

Example method

Test of limiting values

Software verification
Dynamic verification > Online tests

17.07.2017194

The function is tested with a value from within the limiting range.
Another test is performed with a value from outside the limiting
range.
The test of limiting values of FBs is performed in the FB or it is indi-
vidually developed (see Ä Chapter 6.2.3 “Defensive programming”
on page 97).
1. Determining the limit values from the available specification

or the program code.
2. Write and connect test. An instance of the function block

should be called per limit value.
3. For each test case, check whether the output of the function

block meets the expectation.
4. For each test case, “Restart” the boot application.

9.4.3 Complete functional test of the application
With the aid of functional tests, the safety application on the con-
troller is tested to ascertain whether the outputs react to the set-
tings of the inputs in accordance with the specification. This is a
complete test of the input/output behavior according to the specifi-
cation of the application. The application can still have more inputs
and outputs to be tested.

NOTICE!
Not only the response at the outputs to field
devices must be tested, but also the response at
the sent network variables and at exchange varia-
bles to the main controller. For future extensions
(see Ä Chapter 13.4.2 “Changes in projects with
cross-communication” on page 245), published
network variables without a current receiver must
be tested for preventative purposes. In addition,
the responses must not only be tested under var-
ious configurations of the inputs from field devices,
but also under various configurations of the net-
work variables and exchange variables that the
application receives from safety NVL senders and
the main controller.

You can perform a separate complete functional test of the applica-
tion for every safety application of the machinery.

The hardware must be reset in order to place the
safety controller in the relevant state for the next
test.

Example method

Software verification
Dynamic verification > Complete functional test of the application

17.07.2017 195

The test can either be performed on the final safety controller or on
a model that is similar to the final safety controller, if the boot appli-
cation is later transferred to the final safety controller as described
in the section "Hardware Exchange". (see Ä Chapter 12.6.3 “Hard-
ware exchange” on page 235)

CAUTION!
The transfer must be performed exactly as
described in the section "Hardeware Exchange",
and not by the development system function
Create boot application.
If a boot application is generated with “Create boot
application” , then the boot application must be
retested on the safety controller.

9.4.4 Verification in the finished machinery

CAUTION!
The address uniqueness tests explained as follows
are required unconditionally in order to exclude
with SIL3 safety that, due to an error in the com-
munication path, a safety controller can be con-
nected to the incorrect safe field device or several
safety controllers can be connected to the same
safe field device.

In the finished, complete machinery where the separate function-
tested safety applications are installed, the following is to be
tested:
n Uniqueness of addresses:

– The safety addresses that are set to the safety field devices
in the machinery are unique throughout the machinery.

– The safety addresses that are configured in all safety appli-
cations of the machinery. This means "F_Source_Add" and
"F_Dest_Add" are unique for PROFIsafe devices. "FSoE
address" and "Connection ID" are unique for FSoE devices.
The safety address of each sender network variable list
and the connection ID of each receiver network variable list
is unique throughout the machinery.

n Correct device descriptions: For each field device with a set
safety address X in the machinery, the corresponding device
object uses the matching description file with the configured
safety address X in the project (“Safety configuration” tab).
This verification can be replaced by testing according to the
specification, interfaces (see Ä Chapter 9.3.6 “Application-spe-
cific checks” on page 185).

Software verification
Dynamic verification > Verification in the finished machinery

17.07.2017196

n Correct process signals: Sensors and actuators are connected
in the machinery to the field devices with set safety address X
so that, in the project, they match the use of the image of the
device object with configured safety address X.

n Safety validation: During the safety validation of the machinery,
the realization of the specified safety functions by all (commu-
nicating) safety controllers are verified in the machinery.

NOTICE!
Before the validation, care must be taken that the
safety application which is on the controller is
pinned and that the pin and the pin identifier corre-
spond to the safety application to be verified.

During the validation, all safety functions that have been pro-
grammed in the safety application are tested directly on the plant.
A test is performed to ascertain that all safety functions actually
function and that the safety application is really suitable for the
plant.

Software verification
Dynamic verification > Verification in the finished machinery

17.07.2017 197

Software verification
Dynamic verification > Verification in the finished machinery

17.07.2017198

10 Software acceptance and documentation

10.1 Introduction
This section describes the conditions, the required proofs and the
functions for the archiving of the project and the printout of the
acceptance documentation.

NOTICE!
Throughout the entire process, from the develop-
ment to the acceptance of a safety application,
care must be taken on the user side that the cor-
rect object versions, the correct libraries and the
correct device description files are used (see
Ä Chapter 8 “Pinning the software” on page 173).

NOTICE!
The user is responsible for ensuring that all rele-
vant standards are adhered to in the acceptance of
the safety application.

NOTICE!
The user documentation for this FB in the proven
version belonging to this controller is to be con-
sulted for the evaluation of the correct use of the
interface of the external FBs.

NOTICE!
The CODESYS Standard project view is not suit-
able for the verification and acceptance of a safety
application. The comparison view must be used for
proof of which objects belong to the safety applica-
tion (see Ä “Editor of the safety application object
with object list” on page 56).

Software acceptance and documentation
Introduction

17.07.2017 199

NOTICE!
The CODESYS Standard project comparison is
not suitable for the verification and acceptance of
a safety application. It can only be used as an aux-
iliary function in order to open the comparison view
of the pinned version of the application. The com-
parison view is opened by a double click the safety
application object in the standard project compar-
ison.

10.2 Conditions and proofs for the acceptance
For the acceptance, a CODESYS version and CODESYS Safety
version has to be available that supports the format and the execu-
tion version of the version with which the safety application was
verified.

NOTICE!
The present CODESYS Safety version was used
when developing and testing the safety application.
This CODESYS Safety version is approved in the
current revision list in the certification database of
TÜV (see Ä “Notice Installation1” on page 13). If
necessary, known problems were evaluated as not
relevant for the application.

The present CODESYS Safety version can be displayed with the
command “Help è Display safety version information”.

NOTICE!
The project is available for archiving as a
CODESYS project archive on a memory medium
(see Ä Chapter 10.3.1 “Archiving” on page 204).

Open the project archive with the appropriate CODESYS version.

NOTICE!
The project in the project archive must possess a
user management (the user management template
provided in CODESYS Safety or a user manage-
ment prepared by the user himself).

Check A1

Check A2

Check A3

Software acceptance and documentation
Conditions and proofs for the acceptance

17.07.2017200

Log into the user management with the name that was used for
development and verification.

NOTICE!
The application in the project archive is pinned.
There are no reported deviations of the project
status from the pinned status (not "In work").

Then open the project archive. Compare the pin information in the
editor of the safety application object in the project with the printout
and with the review and test reports.

NOTICE!
Only valid versions of predefined POUs are used
by the application.

The POUs used in any particular version are listed in the editor of
the safety application object (“Objects” tab). The validity of a ver-
sion is shown in Ä Chapter 15.2 “Specific Safety Notes for Applica-
tive Library Function Blocks” on page 271.

NOTICE!
The library manager is not suitable for verifying
which libraries or library function blocks are used
and in which versions. The comparison view of the
safety application object must be used for this veri-
fication (see Ä “Editor of the safety application
object with object list” on page 56).

NOTICE!
The status of the application in the project archive
agrees with the reviewed and tested status, or
there is an explanation and evaluation for devia-
tions.

For this check, the pin information displayed in the application
object should be compared with the pin information noted in review
reports and test reports.

Check A4

Check A5

Check A6

Software acceptance and documentation
Conditions and proofs for the acceptance

17.07.2017 201

NOTICE!
If there are multiple safety controllers in the project,
then a unique device name must be specified for
the corresponding controllers in the machine.

The device names of a controller in the machine are verified by
connecting to the controller with a new user name for the first time
(see Ä Chapter 7.2.2 “Connection setup” on page 149). Then its
identity is confirmed by an action on the controller or a serial
number or similar when its device name is displayed. For the
uniqueness, you must connect one time to each safety controller of
the project. This still has to be done when you accept all safety
controllers of the controller (one by one).

NOTICE!
The status of the application in the project archive
agrees with the status on the controller.

For this check, the controller is connected from the project over a
confirmed connection by a login to the application. Then the dialog
opens at login and display the device name of the controller to be
accepted and reports that the pins were matched. As an alterna-
tive, you can display the device name and the pin information of
the controller in the “Safety Online Information” tab, and then com-
pare with the pin information in the editor of the safety application
object.

NOTICE!
Only a confirmed connection can be used for
acceptance checks. Teleaccess is not qualified for
acceptance checks.

Either you have confirmed the connection to the controller in the
first online service or you verify the information in the “Safety
Online Information” tab that the connection is confirmed.

NOTICE!
You have to make sure that you are connected to
the correct controller that should be accepted.

Either you had to confirm the identity of the controller when con-
necting (see Ä “Connection confirmation” on page 150), or you
check the displayed device name at login or in the “Safety Online
Information” tab.

Check A7

Check A8

Software acceptance and documentation
Conditions and proofs for the acceptance

17.07.2017202

NOTICE!
The firmware on the controller has a valid status.

The status on the controller is displayed in the “Safety Online
Information” tab. The device manufacturer provides information
about the validity of the status.

NOTICE!
For the acceptance the user must check whether
the device description matching the device in the
machinery is actually used.

The device description files identified in the 'Device Info' entry in
configurators and device parameters of logical devices must be the
correct descriptions for the field devices connected in the machine.

NOTICE!
The configuration and the system structure fulfill
the specific system requirements for the employed
safe fieldbus or communication technologies (see
Ä Chapter 14.2.3 “PROFIsafe specific evidence
for the acceptance” on page 257, Ä Chapter
14.3.3 “FSoE specific evidence for the acceptance”
on page 261, and Ä Chapter 14.4.3 “Safety NetVar
specific evidence for the acceptance”
on page 265).

NOTICE!
The documentation of the machinery must notify
the operators and integrators about the safety
notices for the operation of safety systems with
CODESYS Safety from Ä Chapter 12 “Operation”
on page 217 (unless they are not applicable to the
accepting machinery).

Check A9

Check A10

Check A11

Check A12

Software acceptance and documentation
Conditions and proofs for the acceptance

17.07.2017 203

NOTICE!
When using network variables, the documentation
of the machinery muss notify the operators and
integrators about all used safety addresses and
connection IDs from network variable lists. This is
necessary if the machine network should be
extended, or for combining the safety controller or
partial machine to other machinery into a complete
machine (see also Ä Chapter 10.4 “Documenta-
tion for operators and integrators” on page 208).

NOTICE!
The information on the safety application and the
safety application devices is available as a
printout. For printing, see Ä Chapter 10.3.2
“Printing project documentation” on page 207.

NOTICE!
The device name of the controller and the firmware
status are documented.

The device name and the firmware status running on the controller
are displayed in the “Safety Online Information” tab of the safety
controller.

NOTICE!
The device name and firmware status are not con-
tained in the printout created using the
“Document” command of the “Project” category
and must therefore be specially created:

The following belongs with the acceptance documentation:
n Project printout (Ä Chapter 10.3.2 “Printing project documen-

tation” on page 207)
n Verification reports (Ä Chapter 9 “Software verification”

on page 179)
n Device names of the controller and firmware status

10.3 Functions for the acceptance
10.3.1 Archiving

The project must be saved before archiving (“Save project” com-
mand in the File menu).

Check A13

Check A14

Check A15

Software acceptance and documentation
Functions for the acceptance > Archiving

17.07.2017204

With the aid of archiving, all objects belonging to a safety applica-
tion are summarised into a single file.
This file can saved as a data backup and unpacked again if
needed.

The archiving of the project for the acceptance of
the safety application can be done via the project
archiving function. This takes place using the
“Save/send archive” command in the “Project
archive” submenu of the “File” category. All infor-
mation relevant to the acceptance must be
selected in the “Project Archive” dialog.

The following information must be selected in the “Project Archive”
dialog in order to archive the safety application:
n Library profile
n Options
n Referenced libraries
n Referenced devices

Software acceptance and documentation
Functions for the acceptance > Archiving

17.07.2017 205

Fig. 96: 'Project Archive' dialog

The following items are also recorded in the project archive
through the correct selection in the Selection dialog
n all safety applications with channel mappings and exchange

lists
n all field bus configurations and device parameterizations
n all libraries used

Software acceptance and documentation
Functions for the acceptance > Archiving

17.07.2017206

10.3.2 Printing project documentation
In CODESYS Safety, the command “Project è Document” is used
for printout out the project documentation. A printout of all marked
objects is made, including the object information, checksum and
the pin information (pin identifier). With the object views (object
contents), the pin identifier or, if the object is not pinned, the infor-
mation “In Work” is also printed out for each object. The printout
may also contain a cover sheet with the following information: file,
date, profile, and table of contents.
The project documentation includes the following information rele-
vant for acceptance:
n Version of CODESYS Safety
n Used sources
n Reused predefined POUs and their versions
n Safety-oriented configuration and device parameters of safe

field devices

For the printout of the acceptance documentation
the safety controller and all its sub-node points and
objects are marked in the “Document project”
dialog.

For detailed information on the documentation of a
project, see the CODESYS Standard online help.

Software acceptance and documentation
Functions for the acceptance > Printing project documentation

17.07.2017 207

Fig. 97: Dialog 'Document project'

10.4 Documentation for operators and integrators
The safety addressing, which must be tested for uniqueness and
correct connection, must be taken from the CODESYS projects
with which the controllers were programmed. As this can be sev-
eral projects, the commissioning engineer or operator must know
about the safety addressing from all projects.
The following safety addressing is relevant:

Documentation of safety
addressing when using safety net-
work variables

Software acceptance and documentation
Documentation for operators and integrators

17.07.2017208

n Safety addressing that should be used for cross-communica-
tion between projects

n Safety addressing that is used for project-local NVL connec-
tions.

NOTICE!
In the documentation of the safety application, all
used safety addressing of NVLs and in the docu-
mentation of machinery should be listed for all
used safety addressing of all integrated safety con-
trollers.
– For all contained sender NVLs: List of the

safety address that they reserve or under
which they are reachable, if necessary with a
comment that they are internal.

– For all contained receiver NVLs: List of the
connection ID, that they reserve.

– List of the safety addresses of the linked
sender NVL with which they can establish a
link.

Software acceptance and documentation
Documentation for operators and integrators

17.07.2017 209

Software acceptance and documentation
Documentation for operators and integrators

17.07.2017210

11 Software update
11.1 Overview of versioning

This section describes the possible effects of installing a new
device or firmware version or a new CODESYS version on an
already verified or accepted project and the consequences of
installing a package that is not approved for CODESYS Safety.

11.2 Updating the device version

Changing the contents of a device description can
lead to the safety application no longer being
pinned, but rather "In Work" again. The safety
objects affected by the changed device description
and listed with changed checksum in the compar-
ison view of the safety application object must be
subjected to an influence analysis and subse-
quently re-pinned and verified and, if necessary,
accepted again.

If a new version of a device description is available, the service
employee should inform himself precisely before installing the new
device description about which of the possible variants of a new
version is concerned and what effects this will have on the project
and thus also on the verification and the acceptance:

Software update
Updating the device version

17.07.2017 211

n the new device is compatible with the previous device:
after installing the new device description in the device reposi-
tory and updating the device (via the context menu in the
device tree), no errors occur when translating the safety appli-
cation. No further activities need to be carried out.

n If a safety device is being updated:
The update can contain changed device parameters or a
changed I/O structure, resulting in changes to safety objects of
the safety application.
The safety objects affected by the changed device description
and listed with changed checksum in the comparison view of
the safety application object must be subjected to an influence
analysis and subsequently re-pinned and verified.

n If a standard field device is being updated:
– If no I/O data of the standard field device are mapped to

the safety application via the logical I/Os, there is nothing to
be done in the safety application. The safety application is
not affected.
The comparison view of the safety application must be
checked: it remains unchanged.

– If I/O data of the standard field device are mapped to the
safety application via logical I/Os, then the update can
result in changes to safety objects of the safety application.
The safety objects affected by the changed device descrip-
tion and listed with changed checksum in the comparison
view of the safety application object must be subjected to
an influence analysis and subsequently re-pinned and veri-
fied.

New device description files must first be installed
in the device repository (for detailed information
see Ä Chapter 5.3 “Device administration ”
on page 46). In order to update the device, the
physical device must be selected in the project tree
and the “Update device...” command in the con-
text menu activated.

The detailed information to the installed device
descriptions is available in the device repository.
To do this the respective device must be selected
and the “Details...” button actuated.

11.3 Updating the firmware and execution version
Updating the firmware does not usually lead to the loss of the
acceptance of your safety application. This section describes the
circumstances under which you lose your acceptance and when an
already accepted safety application retains its acceptance.

Software update
Updating the firmware and execution version

17.07.2017212

Explicit firmware update: actuate the “Update FW” button on the
“Safety Online Information” tab of the safety controller.
Implicit firmware update: use of a newer safety controller with a dif-
ferent firmware version to that with which the safety application
was accepted.

You can read which firmware version is on your hardware with the
aid of the “Safety Online Information” tab. The firmware version is
displayed in the bottom display field. The firmware version has no
direct effect on the processing of your safety application. Changes
in the processing of the safety application are displayed separately
from the firmware version in the so-called execution version as
well as in the versions of the libraries. The execution version can
be found in the Properties dialog of the safety application on the
“Safety” tab. The same execution version with the same safety
application guarantees identical processing. An acceptance of the
safety application is retained.

The execution version of the boot application on
the controller can be read on the “Safety Online
Information” of the safety controller editor in the
online state.

All information on the firmware and hardware of a device that is rel-
evant to CODESYS is stored in the so-called device description
(see Standard CODESYS). If the device description does not
match the device to which it is connected, an error message
appears as in CODESYS Standard. A connection with the wrong
device description is thus impossible. The device description also
contains information on the execution versions that the device sup-
ports and which versions of the libraries are on the device.

Usually a new device will support old execution versions. The run-
time behavior of your safety application is retained by retaining the
execution version. If an execution version is no longer supported,
however, then the newest version should be set. In this case the
safety application loses its pin.

Changing the execution version
The execution version can be selected in the
“Properties” dialog of the application object on the
“Safety” tab.

It is possible that newer library versions may be drawn when
updating the device description. This takes place automatically in
such a way that the set libraries always match the device in use. If
library function blocks have changed, these have a different CRC
and the user must pin, verify and accept his application again.

How does a firmware update take
place

Firmware version and execution
version

Firmware and device description

Changing the execution version

Changing a library version:

Software update
Updating the firmware and execution version

17.07.2017 213

An update of the device description of the safety
application can lead to the loss of the acceptance
of the safety application. Contact your device man-
ufacturer with regard to whether an update is pos-
sible without problem.

The use of another library version may change the pin of a used
library block under certain circumstances. Refer to the comparison
view of the safety application to see whether that is the case.
In this case the application must be pinned, verified and accepted
again.
The correct libraries for a safety controller are automatically drawn
in the correct versions with the device description of this safety
controller. The library manager serves only to provide an overview
of the available libraries and their function blocks. It is recom-
mended not to remove or add libraries manually.

11.4 Updating the CODESYS version
For CODESYS Safety, two versions of are relevant: the version of
CODESYS as well as the version of the CODESYS Safety exten-
sion (both items of information can be found in the “Help” menu
using the “Show safety version information” command).

CODESYS and CODESYS Safety are further developed in such a
way that a software update is possible without the loss of the
acceptance of a safety application.

Newer versions of CODESYS and CODESYS
Safety should be procured from the manufacturer
of the safety controller. Only the manufacturer can
evaluate the effects of a software update. The two
software packages should always be updated
together, unless the manufacturer of the safety
controller makes recommendations.

11.5 Extension of CODESYS with packages
With the Package Manager functions (see CODESYS), a
CODESYS profile that is extended by CODESYS Safety can be
extended by more plug-ins.

Software update
Extension of CODESYS with packages

17.07.2017214

NOTICE!
With the installation of additional packages, the
CODESYS installation can lose its qualification.
See Ä “Notice Installation2” on page 13.

NOTICE!
A post-installed package might modify a previously
valid combination of CODESYS and CODESYS
Safety in an invalid way. Then the safety installa-
tion check reports after restarting, at the latest
when the safety functions are first used, with the
message that the current CODESYS Safety instal-
lation is invalid and the application will be termi-
nated (see Ä Chapter 2.7 “Handling error mes-
sages from CODESYS Safety” on page 15).

Extension of CODESYS Safety with
packages

Software update
Extension of CODESYS with packages

17.07.2017 215

Software update
Extension of CODESYS with packages

17.07.2017216

12 Operation
When the machinery is in operation, safety is provided by the
accepted safety functions. When in operation, the machinery is
running or it is being serviced (offline); or a CODESYS instance is
connected to a controller of the machinery (for example, for moni-
toring or administration (online).
This section describes measures and procedures that must be
considered when the machinery is in operation (offline and online),
among others for maintaining the safety functions.

12.1 IT security during operation

CAUTION!
The concept of machine safety is based on specific
operational parameters and risks. The operational
concept of the machine has to guarantee the IT
security of the standard control devices. Otherwise
attackers could run the machine outside of these
parameters, causing additional or increased risks
that no longer command diminished safety func-
tions.

CAUTION!
The operational concept of the machine has to
guarantee the IT security of the safety controller.
Otherwise attackers could compromise the safety
functions in such as way that they no longer pro-
vide functional safety, even when operational
parameters remain unchanged.

Access protection of the safety controller should be setup for
operational use. In particular, used passwords (see Ä Chapter
5.2.4 “Setting up the admin password on the controller”
on page 46) should be replaced by operational passwords possibly
in the application development. If necessary, read access can also
be provided without confirmation.
During operation, access protection and teleaccess should be
reevaluated and possibly adapted at appropriate times.
In order to ensure protection of access to the main controller and
the safety controller, the notes shown below must be observed and
the measures carried out.

No security, no safety!

Operation
IT security during operation

17.07.2017 217

NOTICE!
On every level, a violation of the safety mecha-
nisms due to unauthorized external access can
present a threat to the safety system.

Overview of the protective levels
n Barrier 1: Access protection for the machine
n Barrier 2: Access protection for the main controller
n Barrier 3: Basic self-protection of the safety controller

– Barrier 3a. Identification of the safety controller
– Barrier 3b. Telepassword

n Barrier 4: Operation-dependent protection of the safety con-
troller
– Barrier 4a. Administration password
– Barrier 4b. User management in the project

12.1.1 Security measures in the environment of the safety controller
The control system of a machine can consist of several controllers.
In general, an existing network between them (machine network)
should be protected.
If the machine network is used for safety variables (topology T3),
then access protection on each controller is no longer sufficient.
Safe cross-communication can still be disrupted or even incorrect
data can be inserted.
Due to safety requirements (compare: Ä Chapter 14.4 “Network
variables” on page 261), the network and all connected controllers
must be separated physically from the outside world. For access
protection, this automatically results in the highest level of protec-
tion.
If safety controllers in the machine do not use safety network varia-
bles (topologies T1 or T2) and the machine network is connected
to the outside world, then a gateway should be used:
n It is designed as its own network that is connected to the out-

side world (company network) by a gateway only.
n Set up access protection to this gateway on the control network

of the machine
n Gateways should limit the communication protocols with the

outside world to the absolute necessary, and for example it
should not allow standard CODESYS network variable commu-
nication from and to the machine.

Barrier 1: Access protection for the
machine

Operation
IT security during operation > Security measures in the environment of the safety controller

17.07.2017218

CAUTION!
Check possibilities to access controller.
Controllers should not be accessible from the
Internet or networks that are not trustworthy.
In particular, the programming ports of the con-
troller may under no circumstances be accessible
from the Internet without protection (usually UDP
ports 1740 to 1743 and TCP ports 1217 + 11740 or
the controller-specific ports).
If access from the Internet has to be permitted (for
example, for teleaccess to the safety controller,
refer to Ä Chapter 12.3.1 “Connection to the safety
controller for teleaccess” on page 225), then it is
required to select a secure method of connecting
to the controller (for example, VPN).

NOTICE!
In order to minimize the risk of data security viola-
tions, we recommend the following organizational
and technical actions for the system where your
applications are running:
As far as possible, avoid exposing the PLC and
control networks to open networks and the
Internet. For protection, use additional data link
layers such as a VPN for teleaccess and install
firewall mechanisms. Limit access to authorized
persons, change existing standard passwords
during the initial commissioning and continue to
change them regularly. If, despite everything, you
wish to publish your web visualization, it is urgently
recommended that you provide it at least with
simple password protection in order to prevent
someone accessing your controller functionality
over the Internet (see the example in the project
"SimpleWebvisuLogin.project", which is provided
with the standard installation of the development
system).

The IT security analysis should check that no risks can occur to the
machinery from attacks to the machine network and the standard
controllers, which are beyond the scope of the safety controller
system.

12.1.2 Security measures in the safety controller
Each online connection to the safety controller is subjected to a
basic security measure.

Barrier 2: Access protection for the
main controller

Barrier 3: Basic self-protection of
the safety controller

Operation
IT security during operation > Security measures in the safety controller

17.07.2017 219

The two use cases of an online connection (development and
administration on site, and remote diagnosis) are protected by two
different barriers.
Barrier 3a. Identification of the safety controller
Each access to the safety controller for purposes of development
or administration requires the previous identification of the safety
controller at least one time.
The following measure from Security Level 1 of IEC 62443 is
implemented:
Device-specific one of both measures to avoid logging in to the
wrong controller:
n Entry of the serial number of the safety controller
n Pressing a button (or switch) on the safety controller
To successfully login to the safety controller, one of these two
actions must be carried out, depending on the safety controller
(see Ä “Connection confirmation” on page 150). These measures
can be classified as relatively safe, since the pressing of a button
must be done manually and directly on the safety controller and the
entry of the serial number requires insider knowledge of the
machine.
Barrier 3b. Telepassword
For the purpose of diagnosis (refer to Ä Chapter 12.3.1 “Connec-
tion to the safety controller for teleaccess” on page 225), access to
the safety controller is also possible without the controller ID. This
access is protected by the following measures.
n 1. It is accepted by the controller only if teleaccess has been

permitted previously by the user on location after identifying the
controller (Barrier 3.1a) and providing the administrator pass-
word (Barrier 3.2a).

n 2. It requires a telepassword.
n 3. It is restricted to read-only access.
Commands that are possible for teleaccess:
n “Login”
n “Logout”
n “Refresh” ; button in the “Safety Online Information” tab of the

safety controller
n Show and save log; buttons in the “Log” tab of the safety con-

troller

NOTICE!
In order to prevent unauthorized access to the
safety controller from the Internet, a strong pass-
word should be set.

Even if access to the safety controller was authorized by identifica-
tion or telepassword, the possible operators can still be restricted.
Barrier 4a. Administration password

Barrier 4: Operation-dependent
protection of the safety controller

Operation
IT security during operation > Security measures in the safety controller

17.07.2017220

Every intervention in the process and every change to the identi-
fied safety controller via online services require the identification of
the safety controller (Barrier 3a) and the administration password.
The boot application can be protected against unauthorized write
access by means of the administrator password (admin password)
(see Ä Chapter 12.1.2 “Security measures in the safety controller”
on page 219).
Commands that are protected by the administration password:
n “Login”
n “Create boot application”

“Delete boot application”
n “Restart boot application”
n “Set admin password”
n “Update firmware”
n “Configure teleaccess”
n “Reset cold”
n “STOP”
n “START”
n “Write values ”
n “Force values”
n “Unforce values”
n “Change device name”

NOTICE!
In order to prevent any manipulation to a success-
fully identified safety controller from the Internet, a
strong password should be set.

Barrier 4b. User management in the project
Every access to the contents of the running application (read,
write, stop, variables etc.) requires a project with the same applica-
tion version as on the controller. Protection from illegal mode of
access can be established in the user management of the project.
Rights can be assigned in such a way in the project user manage-
ment that safety objects of a project can be created or modified
only by certain user groups (e.g. "Safety Developer").
Each part of a safety application of a CODESYS project can be
protected against unauthorized access by means of appropriate
settings in the CODESYS user management.

NOTICE!
In order to ensure the access protection of the
safety application, the user must set up a corre-
sponding CODESYS user management for each
project or use the integrated safety user configura-
tion in CODESYS Safety (see Ä Chapter 5.2.3
“Setting up user management in the project”
on page 43).

Operation
IT security during operation > Security measures in the safety controller

17.07.2017 221

Without user management in the project, each
person who collaborates in the project possesses
all rights to the standard and safety applications in
the project.

12.1.3 Protection of the safety controller against write access
The safety controller can be protected against unauthorized writing
access with the aid of the admin password.

NOTICE!
In order to prevent any manipulation to a success-
fully identified safety controller from the Internet, a
strong password should be set.

The button for the “Set admin password” command is located on
the “Safety Online Information” tab in the safety PLC editor. This is
opened after activating the “Edit object” command in the context
menu of the safety controller and clicking the “Safety Online
Information” tab.

Fig. 98: Dialog 'Set admin password'

When exchanging the PLC, the admin password is
transferred to the new controller together with the
safety application.

During the series production of a safety controller
with boot application the admin password is also
copied, as a consequence of which all series-pro-
duced models have the same admin password.

Setting the admin password

Operation
IT security during operation > Protection of the safety controller against write access

17.07.2017222

In order to be able to change the admin password, the service
employee must first authorize himself with the already existing
admin password.

The admin password is queried before the execution of the first
writing online command after opening the project, i.e. before the
controller enters the unsafe state. A password, once entered,
remains active in CODESYS until the project is closed and does
not have to be entered again.

Fig. 99: Dialog for retrieving the admin password

12.1.4 Protection of the safety controller against teleaccess
Initially, teleaccess is not possible. It must first be unlocked. A tele-
password has to be assigned for this. The safety controller can be
protected against unauthorized teleaccess (read-only) by means of
the telepassword.

NOTICE!
To prevent the spying of a safety controller
reached via the main controller, teleaccess should
be unlocked only when and as long as it is
required for operation. Furthermore, its assigned
password should be as strong as possible.

The button for the “Configure teleaccess” command is located in
the editor of the safety controller in the “Safety Online Information”
tab. In the dialog, teleaccess can be unlocked and locked again.
The telepassword can be changed there at any time. For the
description of the dialog, refer to the online help in "Configuring tel-
eaccess".
The telepassword is required for teleaccess to the safety controller.
In addition, the entire communication channel from outside to the
safety controller also has to be possible for teleaccess. For the
communication channel, a safe method has to be chosen for con-
necting to the controller (example: VPN) (see also Ä Chapter
12.1.1 “Security measures in the environment of the safety con-
troller” on page 218).

Retrieving the admin password

Configuring teleaccess

Operation
IT security during operation > Protection of the safety controller against teleaccess

17.07.2017 223

12.1.5 Monitoring security-relevant results
Changes to the security measures can be understood as follows:
For each password change, there is a log entry.
Whether and when teleaccess takes place can be understood as
follows: For each teleaccess, there is a log entry.

12.2 Monitoring errors during operation
12.2.1 Increased communication error frequency

CAUTION!
Residual error rate
Communication errors reported by the FSoEMaster
driver instance shall not occur more frequently
than one time in five hours. In this way, the residual
error rate per hour for safety-related signals
remains below the SIL3 limit value of 10-9.

CAUTION!
Residual error rate
Communication errors reported by the NetVarRe-
ceiver driver instance shall not occur more fre-
quently than one time in five hours. In this way, the
residual error rate per hour for safety-related sig-
nals remains below the SIL3 limit value of 10-9.

12.2.2 User behavior for error messages

NOTICE!
The user is obliged to report safety-relevant errors
immediately to the respective device manufacturer.

NOTICE!
The occurrence of an undefined error must be
reported immediately to the device manufacturer!

12.3 Diagnosis of errors during operation
The safety function can be diagnosed on four levels:

FSoE devices in the machinery

Safety network variables in the
machinery

User behavior in the case of an
undefined or safety-relevant error

Operation
Diagnosis of errors during operation

17.07.2017224

n Applicative diagnosis: Functions for diagnosis, which were
hardcoded into the safety application and main application,
should cover the typical diagnostic cases. For example, a visu-
alization on the main controller could evaluate the error codes
from driver POUs and PLCopen function blocks (if these are
transferred to the main controller by means of exchange varia-
bles).

n Diagnose with standard CODESYS methods: The connection
to the safety controller and the fieldbuses and network varia-
bles used by the safety controller can be diagnosed for an
existing online connection with the main controller. This is done
by means of the status icon in the device tree and the “Status”
tab of the device editor of the main controller or safety con-
troller.

n Diagnosis with CODESYS in safe mode: (read-only) either with
a confirmed connection (Ä Chapter 7.2.2 “Connection setup”
on page 149) or teleaccess (Ä Chapter 12.3.1 “Connection to
the safety controller for teleaccess” on page 225).
The following is possible:
– “Log” tab of the safety controller (see Ä Chapter 12.3.3

“Log: Diagnosis of system and runtime errors”
on page 227)

– “Safety Online Information” tab of the safety controller (see
Ä Chapter 12.3.2 “Information on firmware and boot appli-
cation ” on page 226)

– “Status” tab of the safety controller (see Ä Chapter 12.3.4
“Status: Communication diagnosis” on page 229)

– After login: Monitoring in editors and watch list (see
Ä Chapter 7.6.1 “Monitoring” on page 163); flow control is
not possible during teleaccess.

n Possible only for a confirmed connection: Debugging with
CODESYS: If the listed options for diagnosis are insufficient,
then the last possibility is to debug the application by interven-
tion in the flow (see Ä Chapter 7.6 “Monitoring and debugging”
on page 163). This represents a kind of maintenance in which
safe mode is exited temporarily and the machinery should be
safeguarded organizationally (see Ä Chapter 7.5.2 “Debug
mode and organizational safety” on page 161.

12.3.1 Connection to the safety controller for teleaccess
The requirements for teleaccess are a network connection, the tel-
epassword, and the activation of teleaccess. During teleaccess,
only limited access (read-only) to the safety controller is possible.
1. Set the active path to the desired device (device name) on

the “Communication settings” tab of the safety controller, see
Ä “Network connection for the confirmed connection”
on page 149 (procedure is same as in standard CODESYS;
refer to the standard CODESYS online help for details).

2. Activate the “Login” command in the “Online” menu.

Operation
Diagnosis of errors during operation > Connection to the safety controller for teleaccess

17.07.2017 225

3. The dialog “Connect to safety controller” opens. Select the
connection type “Teleaccess” .

The option is available only if teleaccess has
been unlocked for the controller (see
Ä Chapter 12.1.4 “Protection of the safety
controller against teleaccess” on page 223).

4. Enter the telepassword.
5. Click “OK” .

NOTICE!
Teleaccess is not qualified for verification and
acceptance.

12.3.2 Information on firmware and boot application
The information on the loaded boot application and on the firmware
is shown on the “Safety Online Information” tab of the safety con-
troller.

NOTICE!
When using the “Safety Online Information” tab for
verification activities or analyses, the device name
must be used for checking that the information
originates from the desired controller, and that the
information was retrieved over a confirmed con-
nection (“Current connection: Device identity
confirmed”).

By executing the “Refresh” command, all current
information for the boot application and for the
firmware from the displayed device instance is
shown with current values. The developer receives
a message if the information read by the controller
is corrupt.

The following data are displayed for the boot application:
n “Name ”

Name of the safety application object
n “Comment”
n “Execution version”

Information on the firmware and
the boot application

Operation
Diagnosis of errors during operation > Information on firmware and boot application

17.07.2017226

n “ Created”
Time of the creation of the boot application

n “Boot application pin”
Information about the boot application pin
– “Name”
– “Revision”
– “CRC”
– “Created”

For detailed information, see Ä Chapter 12.3.2 “Information on
firmware and boot application ” on page 226.
Information about the safety controller
n “Firmware”

Fig. 100: Open the "Safety Online Information" tab

12.3.3 Log: Diagnosis of system and runtime errors

The log view of CODESYS Safety corresponds to
the CODESYS CODESYS log. Therefore, please
refer to the CODESYS online help for further
detailed information.

The log is displayed on the “Log” tab of the safety controller and
serves as a record and to diagnose application runtime errors and
system errors. It can help to find the cause of an error in the con-
troller or in the application.

NOTICE!
The log is not a permissible means of verification,
i.e. for the proof of freedom from errors or the proof
of the fulfillment of the requirements.

Log

Operation
Diagnosis of errors during operation > Log: Diagnosis of system and runtime errors

17.07.2017 227

Two logs are available in CODESYS Safety:
n Device log
n Application log
The device log belongs to the device and is intended for entries
that concern the device, e.g. system errors, generation of new boot
applications.
The application log belongs to the IEC application and is intended
for entries that concern the application, e.g. runtime errors, errors
during the loading of the boot application and online communica-
tion errors.
The application log is the default log of the safety controller. The
device log is available only after the default log (application log)
has been loaded.

When the button is pressed, all available logs (device and appli-
cation logs) are loaded in cycles from the controller and they can
be selected in the “Logger” view.

The information displayed in the logs is structured as follows:
n Severity (information, warning, error, exception),
n Time stamp
n Error description
n Component generator
When changes are entered due to online accesses, the name of
the developer is also logged. Since there is no user management
on the controller, the name of the developer from the user manage-
ment in the development system is used. If the developer is not
logged in to the development system as a specific user, but as one
of the predefined users, the user name from the Windows user
management is used instead.
The logs can be exported and imported as XML files.

Log entries are generated in particular if the boot application
cannot be loaded in offline mode for any reason and a system error
occurs.
A system error is also generated if the log cannot be written to
when the runtime system attempts to load the boot application on
booting up.

If the log does not indicate the cause of a system
error, then the reason for this system error could
be that the log could not be written to by the
safety-related runtime system.

NOTICE!
In the case of hardware errors it is possible that
not all entries could be written in the log.

Generation of the log entries

Operation
Diagnosis of errors during operation > Log: Diagnosis of system and runtime errors

17.07.2017228

A log entry is generated
n Whenever the runtime system is in offline mode (i.e. when

booting up without an online connection) and reacts to an error
in the application in accordance with a safety requirement by
aborting the loading procedure.

n Whenever the runtime system is in offline mode and reacts to
an application error by terminating the execution of the applica-
tion.

n When swapping the boot application with the last boot load or
the last generation of a boot application. This is recognized by
the runtime system.

n In the case of a falsified or mismatching execution version of
the runtime system.

n Logging of changes in the boot application
n Logging of firmware updates
n Logging of the generation of new boot applications

If the application is terminated because of a runtime error, the gen-
erated log entry contains the following information:
n Name of the erroneous POU
n Number of the erroneous network of the POU
n for an FB POU: FB instance in which the error showed up

12.3.4 Status: Communication diagnosis
The diagnostic messages for the safety controller and the diag-
nostic messages for the status of the connection of the safety con-
troller to higher-level or lower-level devices are shown on the
“Status” tab.
The tab is available only in the online mode of the safety controller
or the main controller.

Fig. 101: Tab 'Status'

Messages from the safety controller concerning its internal status
are displayed in the field for the device.

Log entry in the case of a runtime
error

Operation
Diagnosis of errors during operation > Status: Communication diagnosis

17.07.2017 229

Messages concerning the status of the connection of the safety
controller to higher-level or lower-level devices are displayed in the
field for the respective module.
The following messages are displayed:
n Different configuration of the I/O modules with regard to

number, ID or I/O size on standard and safety
n Different configuration of an I/O module with regard to the log

parameterization on standard and safety.
These messages are displayed only for bus systems in which
the transfer of the safe configuration takes place via the
standard configuration (e.g. PROFIsafe)

12.4 Administration with CODESYS

The “Safety Online Information” tab is the landing page for the
administration of the safety controller with CODESYS
This tab (see Fig. 17) offers information about the safety controller,
with which CODESYS Safety is currently connected.
The passwords, boot application, and firmware of the safety con-
troller can be managed for a confirmed connection to the safety
controller.
The text output fields are empty if CODESYS Safety is not con-
nected to a controller.
Commands and text outputs:
n Command “Refresh” : So that the current information about the

boot application is output in the controller, this command must
be executed first.

n “Device name” : The name of the safety controller which is
logged onto.

Information and commands for access to the device:
n “Current connection” : Indicates whether or not the displayed

information originates from a confirmed device or teleaccess.
n “Teleaccess” : Indicates whether or not teleaccess to the PLC

is permitted.
n Command “Admin password” : Sets a password for all writing

accesses to the controller. This is initially empty. Write access
to the safety controller (e.g. load project) must be confirmed
with this password.
(see Ä “Setting the admin password” on page 222)

n Command “Configure teleaccess” : Opens a dialog that is used
for enabling teleaccess for the safety controller, changing the
telepassword, or disabling teleaccess (see Ä Chapter 12.1.4
“Protection of the safety controller against teleaccess”
on page 223).

Safety Online Information

Operation
Administration with CODESYS

17.07.2017230

Information and commands for the boot application: (This informa-
tion can only be output if a boot project is stored on the controller).
n “Name” : Name of the currently loaded safety application object
n “Comment” : Comment, as it was stored in the Properties

dialog of the safety application object (“Safety” tab,
“Comment” section).

n “Execution version” : The execution version, as it was set in the
Properties dialog of the safety application object.

n “Generated” : Date and time when the boot project was cre-
ated.

n “Restart” command: Unloads the current application, then
loads and starts the boot project.
(see Ä “Restart of the boot application” on page 157)

n Command “Delete” : Deletes the boot project from the safety
controller and unloads the current application.
(see Ä “Deleting the boot application” on page 232)

The Pin ID (see Ä Chapter 8 “Pinning the software” on page 173)
for the boot project stored in the safety controller is output in the
“Boot application pin” section. It corresponds to the information as
displayed in the editor window of the safety application object.

The output fields are empty if the boot project was
created for an unpinned boot application or for a
boot application that was changed after pinning.

n “Name” : The designation of the pinned status
n “Revision” : The revision number
n “CRC” : The CRC for the pinned application for which the boot

project was created. (Pin checksum)
n “Last change” : Date and time
Information and commands for the safety controller
n “Firmware” : The precise designation of the firmware is read

from the safety controller.
n “Update FW” command: Loads a (different) firmware release

from a file on the controller in order to replace the firmware
already existing there.
(see Ä Chapter 12.6.2 “Installing the firmware update”
on page 235)

n “Reset origin” command: Allows the unloading of the applica-
tion, the deletion of the boot application and the resetting of the
password. This command can be executed without a password
and permits the controller to be reset even if a password has
been forgotten.
(see Ä Further information on page 237)

A safety application in the controller is identified via the pin identi-
fier of the boot application (on the “Safety Online Information” tab
of the safety controller). This pin identifier must correspond to the
pin identifier of the safety application in CODESYS Safety (on the
“Objects” tab of the safety application object).

Identification of the safety applica-
tion

Operation
Administration with CODESYS

17.07.2017 231

Restart of the boot application
A boot application on the controller is restarted by activating the
“Restart” command (“Safety Online Information” tab of the con-
troller) or automatically after switching on the controller.

Restart does not automatically mean that the plant
begins to run in every case. The developer defines
in the application whether the PLCopen function
blocks and the safe output modules start up auto-
matically (Auto reset) or only by means of a
standard signal (Reset).

Fig. 102: Dialog: "Restart" of the boot application

If an error is detected during the loading of the new boot applica-
tion, the loading procedure is aborted and a log entry is generated.

Using the “Delete” button on the “Safety Online Information” tab of
the safety controller, the current application is unloaded and the
boot application on the safety controller is deleted. The deletion of
the boot application is possible only after having already authorized
oneself with the admin password. An existing online connection to
the safety controller is terminated after confirmation by the service
employee by the executing the command.
This command can only be activated if the “Update” command has
been executed at least once and BA information was available on
the controller. The “Update” button is located on the “Safety
Online Information” tab.
The service employee always receives a feedback message as to
whether the command has been successfully executed or not.

Starting the boot application

Deleting the boot application

Operation
Administration with CODESYS

17.07.2017232

CAUTION!
If the “Delete” command of the boot application is
not fully executed, a hazard may arise in the plant
after restarting because it still starts up with the old
application.
The service employee must wait for the message
informing him whether the command was success-
fully executed. If this does not come, the controller
is to be treated as if the boot application can start
again after the restart.

Using the display on the “Safety Online
Information” tab of the safety controller which
shows the application information for the applica-
tion on the controller, the service employee can
additionally ascertain that there is no longer any
boot application on the controller.

1. Select the safety controller in the device tree (project tree)
2. Activate the “Edit object” command in the context menu
3. Open the “Safety Online Information” Safety Online Informa-

tion tab
4. Click the “Refresh” button.
5. Check that no boot application exists any longer.

The admin password is not deleted when the
“Delete” command is executed. The admin pass-
word can be deleted only by a “Reset origin” of the
boot application (see Ä Further information
on page 237).

12.5 Procedure for maintenance
12.5.1 Temporary mode change to unsafe mode

Debugging a running application (see Ä Chapter 12.3 “Diagnosis
of errors during operation” on page 224) and updating a boot appli-
cation (Ä Chapter 12.6.1 “Installing a new boot application”
on page 234 or firmware (Ä Chapter 12.6.2 “Installing the firmware
update” on page 235) require that the safety controller exits safe
mode. Debugging and updating require a confirmed connection to
the safety controller (teleaccess is not enough) and organizational
safety measures.

Displaying the application informa-
tion

Operation
Procedure for maintenance > Temporary mode change to unsafe mode

17.07.2017 233

CAUTION!
As long as a safety controller, which contains a
safety network variable list (sender), in a machine
is in debug mode, the entire machine must be
safeguarded organizationally.
This also means that no person is located in the
hazard zones that are monitored by safety control-
lers that are connected to the debugged safety
controller via safe cross-communication with the
safety controller that is in debug mode.

NOTICE!
Please note the information in sections Ä Chapter
7.5.2 “Debug mode and organizational safety”
on page 161 and Ä Chapter 7.6.3 “Debug mode of
the safety controller” on page 165.

12.6 Maintenance and service
12.6.1 Installing a new boot application

CAUTION!
When downloading an accepted boot application to
the controller, the system-integrator in the machi-
nery production must check that the generation of
a pinned boot application is signaled without devia-
tions and with the correct pin identifier. If an "In
Work" status is signaled when generating a boot
application, the procedure must be aborted.

NOTICE!
If an accepted boot application is loaded to the
controller on-site as a software update, the service
employee must check whether a pinned boot appli-
cation is signaled without deviations and with the
correct pin identifier.

NOTICE!
When transmitting an accepted application via a
storage medium to another controller, the service
employee must verify that the boot application on
the "new" controller has the correct pin identifier
(on the “Safety Online Information” tab of the
safety controller).

Leaving operating mode — Debug-
ging the machinery

Procedure in operation

Operation
Maintenance and service > Installing a new boot application

17.07.2017234

12.6.2 Installing the firmware update

Before a firmware update is performed the service
employee should be fully aware of the reason for,
and the consequences of the firmware update. See
Ä Chapter 11.3 “Updating the firmware and execu-
tion version” on page 212.

The firmware on the safety controller can be exchanged by means
of a firmware update. The “Update FW” button in the “Safety
Online Information” device editor is used for this. The new firm-
ware is loaded from a file to the safety controller and the previous
firmware of the safety controller is replaced. The command can
only be activated if the “Refresh” command has been executed at
least once. Authorization with the admin password is required in
order to execute the command.
Whether a firmware update is available and precisely how this is to
be performed depends on the safety controller employed.

Please contact the device manufacturer for more
detailed information on the firmware update.

12.6.3 Hardware exchange
A defective or old safety controller can be replaced by a new one in
the machinery. The old boot application can continue running on
the new safety controller,
1. If no incompatibility results from a different firmware revision on
the new controller (see Ä Chapter 11.3 “Updating the firmware and
execution version” on page 212).
2. The boot application (depending on the device manufacturer)
was stored outside of the exchanged hardware or is stored on a
disk and this can be loaded to the new controller

CAUTION!
You must ensure that the same boot application as
before is actually running on the new hardware.

Case 1: Your safety controller saves the boot application on an
external drive. Then you must ensure that the external drive of the
old safety controller is plugged into the new safety controller.

Exchanging safety controllers

Operation
Maintenance and service > Hardware exchange

17.07.2017 235

Case 2: Your safety controller saves the boot application on the
main controller. Then, after exchanging the safety controller, you
must establish the connection to the safety controller with
CODESYS Safety and check the pin of the boot application in the
“Safety Online Information” tab (Ä Chapter 12.3.2 “Information on
firmware and boot application ” on page 226). It must be the pin
that was removed in the machinery for the exchanged safety con-
troller.

The admin password goes onto the new controller
together with the boot application when
exchanging the drive.

The steps for PLC removal should be used for the
old, removed controller (see Ä Chapter 12.8 “Pro-
cedure for decommissioning and removing the
safety controller” on page 237).

NOTICE!
Using safety network variable lists
When exchanging main controllers or their applica-
tions, you must take care that their generated
applications match the applications on the safety
controllers under these main controllers. If not,
then the exchange can lead to a mismatch and
therefore to a disruption of the cross-communica-
tion.

Using safety network variable lists
When exchanging main controllers, you should
take care that they have the same IP configuration,
especially the same IP address.

Reason: When the exchange of a main controller
modifies its IP address, the user must adapt the IP
address configuration of all network variable lists
with a connection to the safety controller under the
main controller (of the safety controller) and gen-
erate the applications of the corresponding main
controller again.

Exchanging main controllers

Operation
Maintenance and service > Hardware exchange

17.07.2017236

12.7 Changes to networks and fieldbuses
For all changes to the network at the machine level and to field-
buses, the corresponding system requirements must be fulfilled.
See corresponding section in Ä Chapter 14 “Fieldbuses and net-
work variables” on page 247.

12.8 Procedure for decommissioning and removing the safety controller
In order to decommission a safety controller, it must be clear
whether the boot application is located on the standard controller
(e.g. SD card) or on the safety controller (safety terminal).

CAUTION!
Before a safety controller is decommissioned and
removed from the plant, the boot application on the
safety controller must be "reset origin". This pre-
vents the safety controller from unintentionally
starting with the "old" boot application if it is re-
used in another plant.

CAUTION!
An incomplete execution of the “Reset origin”
command can lead to the boot application
remaining on the controller and becoming active
again when the controller is next started.

When the “Reset origin” command is executed, the current appli-
cation is unloaded, the boot application is deleted and all pass-
words are reset (or the system-specific default password is reacti-
vated) and the release for teleaccess is reset. . The logs are not
deleted. Authorization with the admin password is not required in
order to execute the command.
If the service employee is currently logged in to the application of
the device instance, the command is executed only after confirma-
tion by the service employee and the online connection is termi-
nated.
The service employee always receives a feedback message as to
whether the command has been successfully executed or not. This
feedback message must be confirmed by the service employee.
1. Activate the “Edit object” command in the context menu of

the safety controller in the device tree
2. Open the “Safety Online Information” Safety Online Informa-

tion tab
3. Activate the command by clicking the “Reset origin” button

Reset origin

"Reset origin" procedure

Operation
Procedure for decommissioning and removing the safety controller

17.07.2017 237

CAUTION!
If a controller with a built-in network address is
removed after the second verification and re-
installed in another place, a hazard is possible if
the service employee logs into, debugs or updates
the boot application on the organizationally unsafe-
guarded "new" plant or plant section without pro-
tection by means of a connection verification.
In order to avoid a hazard, service employees
must, directly before or after the removal
- Perform a reset origin on the controller.
or
- Login one time to the controller with a new
project.

If the admin password is lost, the old admin pass-
word can be deleted using the “Reset origin” com-
mand.

Subsequently the boot application must first be
created again in order to be able to assign a new
admin password.

Controller with built-in network
address

Deleting the admin password

Operation
Procedure for decommissioning and removing the safety controller

17.07.2017238

13 Procedure in case of changes to, and re-use of the
accepted software
13.1 Procedure in case of changes to, and re-use of the software

For changes and reuse, the following cases are differentiated:
n Unchanged reuse of a safety application in unchanged system

context (see Ä Chapter 13.2 “Re-use of an accepted safety
project” on page 240). No software development process runs
here.

n Unchanged reuse of a safety application in a new system con-
text (see Ä Chapter 13.2 “Re-use of an accepted safety
project” on page 240). No actual software is developed here,
but the system-wide planning of address uniqueness and
cross-communication between safety controllers (see
Ä Chapter 4 “Planning the overall system” on page 29) and the
verification in the machinery (see Ä Chapter 9.4.4 “Verification
in the finished machinery” on page 196) must be repeated.

n Unchanged reuse of individual function blocks (see Ä Chapter
13.3 “Re-use of function blocks” on page 241) within the soft-
ware development process for a new safety application

n Change to a safety application that was accepted (see
Ä Chapter 13.4.1 “Changes in the project” on page 242). This
entails the start of a software development process for this new
changed safety application.

n Change to a safety application that is in verification (see
Ä Chapter 13.4.1 “Changes in the project” on page 242). This
causes a return of the software development process for this
safety application from verification to programming.

Re-use of software can refer to a complete CODESYS Safety
project or just to one or more function blocks.
In case of changes there are variants where changes are made
during the verification of a safety application or to safety applica-
tions that have already been accepted.

In principle the following applies to all safety applications created
with CODESYS Safety:

NOTICE!
It is the responsibility of the service employee to
make sure that the generated boot application cor-
responds to the desired execution version of the
application.

NOTICE!
Verification and acceptance may only be carried
out with pinned safety applications. No object of
the application may have the status "In Work" (see
Ä Chapter 8 “Pinning the software” on page 173).

Notes on changes and re-use

Procedure in case of changes to, and re-use of the accepted software
Procedure in case of changes to, and re-use of the software

17.07.2017 239

13.2 Re-use of an accepted safety project
The acceptance or the verification results of a CODESYS Safety
project can be transferred to further safety controllers without the
application having to be verified and accepted again, e.g. for the
series production of machines.

CAUTION!
An already accepted safety application can be
placed on another controller without losing the
acceptance only in the following way: duplication of
the boot application from the original controller by
copying the disk. Otherwise the safety application
on the second controller has to be verified and
accepted again.

In case of series production the admin password is
also copied. This means that all series-produced
models have the same admin password.

The second generation of an application that is unchanged in the
project leads with each compatible firmware version to the same
behavior of the boot application.

If an accepted safety application is to be used on a
further safety controller (second generation), follow
the instructions of the safety controller manufac-
turer. The manufacturer may make its own safe
mechanism available for the copying of the appli-
cation.

NOTICE!
In case of duplicating an unchanged accepted
application on a further safety controller by copying
the disk, it must be proven that the second gener-
ated boot application corresponds to the accept-
ance execution version.

NOTICE!
In multi-PLC projects the pin identifier must be
checked in a confirmation dialog during the second
generation of the boot application so that the cor-
rect boot application is generated on the correct
controller.

Procedure in case of changes to, and re-use of the accepted software
Re-use of an accepted safety project

17.07.2017240

NOTICE!
It is the responsibility of the user to make sure that
the boot application corresponds to the desired
execution version of the application. When down-
loading he must verify that an "In Work" version is
not announced, but rather a pinned execution ver-
sion with the correct pin identifier. See Ä Chapter
8 “Pinning the software” on page 173.

13.3 Re-use of function blocks
An already validated function block of an accepted safety applica-
tion can be re-used in another project under certain conditions. The
validation and the test results of the function block can be trans-
ferred to the new application.
The identification of a re-used function block must be proven
n If the function block was validated as part of an application
n If the function block is copied into the application and re-used
n If the function block is re-used from a library

NOTICE!
The proof of re-used function blocks (IEC function
blocks and external function blocks) must be made
via the object list of the application object.

NOTICE!
If a function block is re-used in another project,
then the CRC of the FB and the CRC of the FBs
called by this FB must correspond to the CRC of
the acceptance! The function block must be veri-
fied and validated again if this is not the case (see
Ä Chapter 9.1 “Introduction” on page 179).

In CODESYS Safety, a function block always leads
to the same behavior on the controller with each
compatible firmware version if it

– Is re-used unchanged and
– Contains no global variables and
– Uses no FB whose data layout has changed.

In the case of external FBs the version serves to identify the imple-
mentation of the safety controller.

Change of version of external FBs

Procedure in case of changes to, and re-use of the accepted software
Re-use of function blocks

17.07.2017 241

The device description of the safety controller contains the informa-
tion regarding which version of the external FBs (PLCopen,
standard) belongs to this safety controller. These libraries are
loaded automatically.
If the version of a library changes, then the pin status of the safety
application changes to “In Work” . In the comparison view of the
safety application object it can be clearly seen that the applications
(project status and pinned status) differ only in this external FB. An
effect analysis must be performed. It may not be necessary to test
the entire application again, but only those objects affected by the
respective external FB.

13.4 Changes in the project
13.4.1 Changes in the project

NOTICE!
The comparison editor of the application object
must be used for the proof of structural changes to
the application or of which objects are unchanged
and for the effect analysis of changes or for the dif-
ference acceptance. The standard project compar-
ison is not suitable for this.

The standard project comparison can only be used as an auxiliary
function in order to open the comparison view of the pinned version
of the application. The comparison view is opened by a double
click the safety application object in the standard project compar-
ison.

NOTICE!
It must be verified by means of the pin identifier
that the structural comparison (comparison editor)
compares the desired application versions.

NOTICE!
In case of the generation of a new boot application
after a change, the service employee must make
sure that the generated boot application corre-
sponds to the desired execution version. When
downloading he must verify that the generation not
of an "In Work" version is announced, but rather of
a pinned execution version with the correct pin
identifier. See Ä Chapter 8 “Pinning the software”
on page 173.

Procedure in case of changes to, and re-use of the accepted software
Changes in the project > Changes in the project

17.07.2017242

NOTICE!
If changes are made during the verification to
objects of the safety application or to the project
structure of the safety application, then the safety
application must be repinned and all safety objects
affected by the changes must subsequently be
verified again.

A comparison of the pin versions of the application must be carried
out with the aid of the comparison editor of the safety application
(double-click the safety application object in the project compar-
ison).

NOTICE!
It must be verified by means of the pin identifier
that the structural comparison (comparison editor)
compares the desired application versions.

NOTICE!
All changed safety objects listed in the comparison
editor (checksum of the current project does not
correspond to the checksum of the pinned project)
must be pinned and verified again.

The control flow and data flow analysis can also be used for the
effects analysis in case of changes: Ä “Control flow analysis”
on page 187 and Ä Chapter 9.3.6.5 “Data flow analysis”
on page 189. The list of points of usage for each variable in a
changed GVL or a changed mapping can thereby be obtained. A
list of the points of usage (affected POUs) can thereby be gener-
ated for a changed POU.
In the CODESYS Standard project comparison, the current version
of the opened project is compared with an earlier project version
from a project file or in a source control in order to identify the
changed objects and the parts changed inside them. Refer to the
CODESYS Standard online help for detailed information.

NOTICE!
In multi-PLC projects, when resuming the verifica-
tion following a change during the generation of
the boot application, the pin identifier must be
checked in a confirmation dialog so that the correct
boot application is generated on the correct con-
troller.

For documentation of changes, see Ä Chapter 13.4.1 “Changes in
the project” on page 242.

Changes during the verification

Procedure in case of changes to, and re-use of the accepted software
Changes in the project > Changes in the project

17.07.2017 243

Changes in the device tree (physical devices) of the project tree of
the standard application and changes to the standard application
do not have any effect at all on the already accepted safety appli-
cation.

NOTICE!
Before a changed safety application is verified, it
must be re-pinned. Verification and acceptance
may only be carried out with pinned applications.
No object of the application may have the status
"In Work". The check for "In Work" must take place
before the verification and before the acceptance

NOTICE!
In multi-PLC projects the pin identifier must be
checked in a confirmation dialog during the gener-
ation of the boot application so that the correct
boot application is generated on the correct con-
troller.

NOTICE!
All changed safety objects listed in the comparison
editor of the safety application object (CRC of the
current project does not correspond to the CRC of
the pinned project) must be verified again.

The control flow and data flow analysis can also be used for the
effects analysis in case of changes: Ä Chapter 9.3.6.3 “Global
control flow analysis” on page 187 and Ä Chapter 9.3.6.5 “Data
flow analysis” on page 189. The service employee can thereby
obtain a list of points of usage for each variable in a changed GVL
or a changed mapping. A list of the points of usage (affected
POUs) can thereby be generated for a changed POU.
If a new verification or part verification of the safety application is
necessary, see Ä Verification.
For documentation of changes, see Ä Chapter 13.4.1 “Changes in
the project” on page 242.

NOTICE!
The view qualified for the effects analysis and the
documentation of changes is the comparison editor
of the safety application object.

Changes to an already accepted
safety project

Documentation of changes

Procedure in case of changes to, and re-use of the accepted software
Changes in the project > Changes in the project

17.07.2017244

The change in the program can have effects on the unchanged
parts of the program due to data flow and control flow. In order to
document possible and examined effects, the cross-reference list
to variables that are described differently, or FB instances that are
called differently, can be printed.

The cross-reference list is printed by clicking the button in the
editor of the safety cross reference list.
Furthermore, the comparison editor of the safety application object
can be printed out for the documentation of changes.
The printout is made in this case by activating the “Print
comparison” command in the comparison editor.

13.4.2 Changes in projects with cross-communication

NOTICE!
When changes to the sender affect the variable
values of the network variable list (sender), the
user must consider not only effects on the receiver
in the same project, but also the effects on all
receivers of the network variable list (sender) in the
UDP network from possible different projects.

If the affected receivers are not known in advance (e.g. when
developing partial machines that integrate others into a complete
machine, or of machines that communicate with each other in a
machine room), then the following procedure is supported by
CODESYS. The user changes the object version of the sender net-
work variable list (in the properties dialog, “Safety” tab). In this
way, it is achieved that no old unchanged receiver can receive new
values in the network. This forces the integrator of the complete
machine or the operator of the machine room to generate all
receivers again in the network. In doing so, the effect of the sender
change on the receiver is analyzed. An effects analysis of the
semantic change of the variables on the receiver may still show
that no functional adaptation of the receiver is required. Only the
safety NVL receiver must be updated in order to accept the
changed object version of the sender (which can be understood to
be the documentation of the performance of the analysis).

NOTICE!
Not supported is a modular extension of a machine
by a controller with its own signals that are relevant
for other existing controllers (for example another
emergency stop device), which should also be
considered by existing safety NVL receivers.

Procedure in case of changes to, and re-use of the accepted software
Changes in the project > Changes in projects with cross-communication

17.07.2017 245

NOTICE!
Changes to the receiver — Effect on the sender
If a new safety NVL receiver is added, or an
existing safety NVL receiver is terminated, then
this can have a time-based effect on the main con-
troller of the receiver, the main controller of the
sender, and the sender of the variables. If the cycle
time of the sender is exceed by adding safety NVL
receivers, then manual adaptation of the sender
may be required with a subsequent download.

NOTICE!
When changing applications or signal lengths in
the process, the change analysis must also ana-
lyze effects in the form of a possible undersam-
pling. Compare Ä “Danger of undersampling”
on page 33.

NOTICE!
If the properties of the sent values change due to
changes in the sender controller or to its input
devices (other value ranges, other value changes,
other time-based properties of the values, other
meanings in the machine), then this affects the
received values in the receiver controllers. This
must be considered in the effects analysis of the
change.

Changes in or to the receiver controller or adding receiver control-
lers do not functionally affect the sender controller. There is there-
fore no functional dependency of the sender on its receivers.
Exception: The cycle time can be exceeded.
Changes in or to a receiver controller or adding receiver controllers
can lead to interruptions in communication at most (e.g. when
exceeding available resources or when an address is assigned
twice). Otherwise these changes have no functional effect on the
other receiver controllers.

Project change and effects analysis

Procedure in case of changes to, and re-use of the accepted software
Changes in the project > Changes in projects with cross-communication

17.07.2017246

14 Fieldbuses and network variables

14.1 General section
Output telegram is the protocol-specific I/O telegram from the
safety controller to the safe field device. This I/O telegram con-
tains the output data to the safe field device.

Input telegram is the protocol-specific I/O telegram from the safe
field device to the safety controller. This I/O telegram contains the
input data from the safe field device.

Driver instance: For each configured logical I/O, code is created
for a driver instance of the supported protocol type (example: a
driver instance of type FSoEMaster for an FSoE field device). A
driver instance of type NonSafeIO is created for the standard
modules and exchange variables (see Ä Chapter 5.5.4.2.2.2
“Logical I/O of a standard field device” on page 64 , Ä Chapter
5.5.4.2.2.3 “Logical I/O for data exchange with the main controller
(standard controller)” on page 67). Substitute values, see
Ä “Interruption by the main controller ” on page 171

The safety controller monitors the transmission of the I/O data from
or to the safe field device. A logical I/O is generated by the devel-
opment system for each safe field device. A driver instance is cre-
ated automatically for each logical device.
With the creation of the driver instance, implicit code is generated
resulting in the following for input or output variables:
n Phase 1 (input phase): Processing the input telegrams

(implicit)
The driver instance receives the input telegram and checks this
in accordance with its protocol specification, e.g. PROFIsafe.
The input data or, in the event of an error, the replacement
values are copied into the mapped input variables of the appli-
cation.

n Phase 2: Processing the user application.
The output data are generated in dependence of the input data
and the state of the application.

n Phase 3 (output phase): Processing the output telegrams
(implicit)
The mapped output data of the application are handed over to
the driver instance. The driver instance generates the output
telegram in accordance with its protocol specification and
sends this to the safe field device.

Terminology

Interface description

Fieldbuses and network variables
General section

17.07.2017 247

CAUTION!
When the application is started, it can happen as
of the first cycle that process data is exchanged
between the field and the application. It is impor-
tant to ensure by implementing other system and
application measures that an unexpected (or unin-
tentional) start-up of the machinery does not occur
when the application starts.

CAUTION!
By default, the usual communication errors at the
start do not prevent the automatic start of the
process data communication. Instead, it is only
delayed. See Ä “Input for automatic acknowledg-
ment of start-up errors” on page 248(auto-acknowl-
edge startup error).

The resumption of process data transmission fol-
lowing a communication error is not automatic

The default behavior of the driver for starting up after a reset or for
restarting after a communication error is defined by the initial value
of the respective input. In order to overwrite the default behavior,
the function block in the application must be called and the respec-
tive input must be set accordingly:
The automatic beginning of the process data transmission after the
start is prevented by the program by calling the function block in
the application and setting the auto-acknowledge startup error
input to FALSE (see Ä “Input for automatic acknowledgment of
start-up errors” on page 248).
The automatic resumption of the process data transmission is ena-
bled by the program by calling the function block in the application
and setting the auto-acknowledge interruption input to TRUE (see
Ä “Input for automatic acknowledgment after interruption”
on page 249).

Default behavior of the driver

Note Drv_1 (start of the application)

Note Drv_2 (communication error
at start)

Input for automatic acknowledg-
ment of start-up errors

Fieldbuses and network variables
General section

17.07.2017248

Name Data type Initial value Description, parameter values

<auto-acknowledge startup
error>

BOOL TRUE Startup behavior after reset (commands:
Ä Reset cold Reset application (- 169) and
Ä “Restart of the boot application”
on page 157) of the application, e.g. Pow-
erON.
TRUE: Automatic acknowledgment of errors
during the start-up phase of the safe com-
munication until safe transmission has com-
menced once.
FALSE: Explicit, application-based acknowl-
edgment of errors that occurred during the
start-up phase of safe communication is
required.

NOTICE!
Please note Ä “Note Drv_2 (communication error
at start)” on page 248: The initial value for the input
for the start-up behavior after a reset is TRUE. All
errors for the start-up behavior are confirmed after
a reset.
Then the process data communication begins as
soon as the initial communication error has disap-
peared.

NOTICE!
Please note Ä “Note Drv_1 (start of the applica-
tion)” on page 248: Setting auto-acknowledge
startup error to FALSE does not prevent the auto-
matic start of the process data communication. If
no errors occur during start-up the stack can start
automatically, even if auto-acknowledge startup
errors is set to FALSE. The user must take this into
consideration in the application.

Name Data type Initial value Description, parameter values

<auto-acknowledgment-inter-
ruption>

BOOL FALSE TRUE: Automatic acknowledgment following
a communication error.
FALSE: Explicit, application-based acknowl-
edgment of communication error is required.

Input for automatic acknowledg-
ment after interruption

Fieldbuses and network variables
General section

17.07.2017 249

CAUTION!
If auto-acknowledge startup error and auto-
acknowledge interruption are TRUE, then all errors
are confirmed. This is sensible only in certain
exceptional cases.

Restart behavior following a communication
error
The initial value for the input for the restart
behavior after a communication error is FALSE; the
error with regard to communication transmission is
not automatically confirmed.

An explicit call of the function block instance with
corresponding connection of the inputs is neces-
sary.

Errors can be confirmed with a positive edge on the input for
acknowledgment, provided the output for the acknowledgment
request (Ä “Output for acknowledgment request” on page 251) is
set.
If all errors are confirmed automatically (which is sensible only in
exceptional cases), then this input is not required and can remain
unconnected.
If no acknowledgment is currently requested, the input is ignored:
Therefore the same signal can be connected to the input for the
acknowledgment edge of all driver instances in order to realize a
non-specific confirmation of communication problems.

Name Data type Initial value Description, parameter values

<acknowledgment-edge> BOOL FALSE The resumption of the safety function is con-
firmed after an error with a rising edge on
the input.

CAUTION!
Acknowledgment edge is an input for confirmation
by the user. It is not to be set by the program, but
connected with an input signal.

Note Drv_3 (input for automatic
acknowledgment after interruption)

Input for acknowledgment edge
(manual acknowledgment)

Note Drv_4 (acknowledgment edge)

Fieldbuses and network variables
General section

17.07.2017250

The Acknowledgment edge input requires a rising
edge. After the user has stopped the confirmation
it should go FALSE again in order to conclude the
acknowledgment. Only then is the next acknowl-
edgment requested at the Acknowledgment
request input on the next communication error.

The output is TRUE if a communication error has occurred (start-
up error or interruption) and this only needs to be manually con-
firmed in order to resume communication.
If the Acknowledgment request output = TRUE, the connection
needs a confirmation by the user. Normally the user is informed
that his confirmation is needed (for example with the aid of an
exchange variable to the main controller and display in the visuali-
zation)
If the output is set, the error can be confirmed at the input for
acknowledgment.

Name Data type Initial value Description, parameter values

<acknowledgment-request> BOOL FALSE

The display at the Acknowledgment request output
can only take place if:

1. the communication error is not acknowledged
automatically, i.e. if auto-acknowledge startup error
or auto-acknowledge interruption is FALSE.

2. the “Acknowledgment edge” input is currently
FALSE, i.e. if a previous manual acknowledgment
is not yet concluded.

Thus, if a new communication problem occurs
whilst the user is still confirming a problem that
occurred previously, the new communication
problem is only displayed and processed after the
user has completed the confirmation of the pre-
vious problem.

If the function block is explicitly called by the user in the application
(phase 2), then the FB inputs can be set and the FB outputs can
be read, although the FB itself does not execute any operations.
For each driver instance, there can be at most one call in the appli-
cation.
The FB outputs of the driver instance can be read regardless of a
call.

Output for acknowledgment
request

Explicit calling of the function
block

Fieldbuses and network variables
General section

17.07.2017 251

14.2 PROFIsafe
PROFIsafe is an internationally standardized technology (IEC
61784-3-3) for functionally safe communication.
Basis: [N3.1.2] PROFIsafe – Profile for Safety Technology on PRO-
FIBUS DP and PROFINET IO, Version 2.4, March 2007, Order No.
3.192b
Also: [N3.1.5] PROFIsafe - Profile for Safety Technology on PRO-
FIBUS DP and PROFINET IO, Version 2.5, December 2012, Order
No.: 3.192b
Term definitions

F-Device is a safe, local field device that supports PROFIsafe
communication.

NOTICE!
The user must note the fieldbus-specific system
requirements (see Ä Chapter 14.2.3 “PROFIsafe
specific evidence for the acceptance” on page 257
and note other general system requirements), for
example the installation guidelines of IEC 61918
[N3.1.2-Sec. 9.2] and the limitation on Ethernet
switches with suitability for industrial use [N3.1.2-
Sec.9.5.3].

NOTICE!
When PROFIsafe is used on PROFINET: In the
Ethernet used for this, according to PROFIsafe
standard IEC 61784-3-3, switches are not per-
mitted that allow leaving the network neither are
single port router.

Limitation of number of devices that are connected to a safety
function

Applicable safety standards

System Requirements

Fieldbuses and network variables
PROFIsafe

17.07.2017252

CAUTION!
Communication relationships per safety func-
tion
For SIL3 safety functions the PROFIsafe standard
permits a maximum of 100 PROFIsafe devices, so
that the average probability of dangerous failures
per hour (PFH) remains below the SIL3 limit value
of 10-9.
For SIL2 safety functions the PROFIsafe standard
permits up to 1000 PROFIsafe devices, so that the
probability of dangerous failures per hour (PFH)
increases by 4 x 10-12 for each additional device.

14.2.1 Library Safety PROFIsafeHost
For PROFIsafe devices, the driver function block PROFIsafeHost
is used from the library SafetyProfisafeHost. For a general descrip-
tion of driver function blocks, see Ä Chapter 14.1 “General section”
on page 247. The detailed description of the function block (inter-
face, behavior, diagnostics) is found in the online help.

The version of the function block as described here
corresponds to the latest version of the function
block in the version list Ä Chapter 15.1.3 “Driver
Libraries” on page 270.

CAUTION!
When using PROFIsafe devices, please note the
general safety notes for library function blocks
(Ä Chapter 15.1.1 “Notes About Version Lists”
on page 267) and the safety notes for driver func-
tion blocks (Ä Chapter 14.1 “General section”
on page 247). For this purpose, the “StartOA”
input corresponds to the <auto-acknowledge
startup error> input and the “ AutoOA” input to the
<auto-acknowledge interruption> input. The input
“OA_C” corresponds to the input <acknowledg-
ment-edge> for manual acknowledgment. See
Ä Chapter 14.1 “General section” on page 247

Detection of loopback errors
Loopback errors are detected and displayed with diagnostic code
16#0C101.

Fieldbuses and network variables
PROFIsafe > Library Safety PROFIsafeHost

17.07.2017 253

NOTICE!
SIL monitor
This implementation supports the variant B of the
SIL monitor. Every CRC error about the received
telegram leads to an error response: Error state of
the PROFIsafeHost 0C103, error state of the F-
device: 16#C2XX bit 2.
If the request for a manual operator acknowledg-
ment caused by a diagnostic message is made
more than once within 100 hours, then the respon-
sible service technician should be consulted.
For operators and service engineers: This repre-
sents a serious impairment of the data transmis-
sion within the fieldbus system. Reasons for these
malfunctions could be: Changes in the installation,
corrosion of bus cable screens with plug connec-
tors and extreme electromagnetic interference.
Correspondence with the respective installation
guidelines should be checked, or an EMC expert
should be consulted (for further instructions see
appendix to the PROFIsafe specification, version
2.5, December 2012).

In the application the PROFIsafeHost function block is used for
n Change the default values
n Confirm errors manually
n Diagnosis of the connection to an F-device
To do this the corresponding instance of the ProfisafeHost function
block must be made visible in a program by means of
VAR_EXTERNAL <device name>: ProfisafeHost.

Fig. 103: Function block PROFIsafeHost

14.2.2 PROFIsafe parameters: F-parameters and i-parameters
The parameters of PROFIsafe are divided into two categories:

Using the FB instance

Fieldbuses and network variables
PROFIsafe > PROFIsafe parameters: F-parameters and i-parameters

17.07.2017254

n F-Parameter: Protocol parameters from PROFIsafe.
n i-Parameter: Safety-oriented device parameters from PROFI-

safe devices
In a safety application the parameters are located in the editor of
the respective logical I/Os:
n i-parameters in the “Safe parametrization” tab
n F-parameters in the “Safe configuration” tab

NOTICE!
The general notes on safe parameterization and
safe configuration in Ä Chapter 5.5.4.2.3.2 “Safe
parameterization and safe configuration ”
on page 72 are to be observed.

Which of the F-parameters listed below are actually used depends
on the device.
n “F_Check_SeqNr”

– V2 mode: A sequential number that is always to be
included in the CRC2 generation

– non-editable
n “F_Check_iPar”

– Manufacturer-specific use within a homogeneous system
– non-editable

n “F_SIL”
– SIL which the user requires from the respective F-Device. It

is compared with the manufacturers specification.
– editable

n “F_CRC_Length”
– CRC length
– Value: 3-byte CRC

n “F_Par_Version”
– Version number of F-parameters/FSCT 3/1 operating mode
– Preset value: V2 mode (only V2 is supported)
– editable

n “F_Block_ID”
– Identification of the type of parameter block
– non-editable

The following three parameters are used for setting the source and
target addresses that are assigned when planning the complete
system (Ä Chapter 4 “Planning the overall system” on page 29)
and the watchdog times that are necessary for the response times
of the safety functions:
n “F_Source_Add”

– editable
– “F_Par_CRC” changes when there is a change to

“F_Source_Add” .

Fieldbuses and network variables
PROFIsafe > PROFIsafe parameters: F-parameters and i-parameters

17.07.2017 255

CAUTION!
The user must assure that the F-host has a unique
source address within the PROFINET network and
PROFIBUS fieldbuses (even for several safety
controllers in the same fieldbus).
For topology T2 when several safety controllers
are below the same PROFIBUS/PROFINET
master: The uniqueness of F_Source_Adr must be
guaranteed in the entire PROFINET/PROFIBUS
network.

The user must ensure through organizational
means that the “F_Source_Add” source address
of each F-Device of an F-Host corresponds exactly
to the source address of its F-Host.

n “F_Dest_Add”
– Unique target address of the F-Device in the PROFIsafe

network.
- If several F-Hosts are used for controlling a plant, it is rec-
ommended to give to all F-Devices a unique
“F_Dest_Add” . To this end it is recommended that the user
makes a list with the ranges of values for “F_Dest_Add”
that are permissible for the individual hosts.
This must also be realized even in the case of failure to sat-
isfy the prerequisite that each F-Device is connected to
precisely one F-Host via the wiring and thus receives its F-
parameters only from this F-Host.

– editable
– “F_Par_CRC” changes when there is a change to

“F_Dest_Add” .

CAUTION!
The user must assure that all F-devices have
unique destination addresses “F_Dest_Add” within
the PROFINET network and PROFIBUS fieldbuses
(even for several safety controllers in the same
network).

The user must make sure that the “F_Dest_Add”
on the “Safe configuration” tab corresponds to the
setting on the address switch of the F-Device (usu-
ally a DIP switch).

Fieldbuses and network variables
PROFIsafe > PROFIsafe parameters: F-parameters and i-parameters

17.07.2017256

n “F_WD_Time”
– Time specification in milliseconds for the watchdog timer

that monitors the duration until the receipt of the next valid
PROFIsafe message.

– Default value of the GSD file: Maximum processing time of
the F-device

– editable
– “F_Par_CRC” changes when there is a change to

“F_WD_Time” .
n “F_iPar_CRC”

– CRC calculated from the i-parameters of the F-Device.
– “F_Par_CRC” changes when there is a change to

“F_iPar_CRC” .

The value of the CRC for the i-parameters of the F-
device must be manually entered as the value of
F_iPar_CRC. The CRC for the i-parameters is
located on the “Safe parametrization” tab of the
logical I/O of the F-Device or in the respective F-
Device manufacturer-specific tool.

n “F_Par_CRC”
– CRC for all F-parameters.
– Calculation by safe editors
– This ensures the error-free transmission of the F-parame-

ters.
– non-editable

14.2.3 PROFIsafe specific evidence for the acceptance
Proof must be provided upon acceptance of a safety application
for:
n Unique source address of each F-host within a plant/network
n The source addresses of all F-devices of a host must corre-

spond to the source address of their F-host within a plant/
network. (“F_Source_Add” on the “Safe configuration” tab of
the logical I/O of the safe field device (F-Devices))

n Unique destination address of all F-devices of all F-hosts.
(“F_Dest_Add” on the “Safe configuration” tab of the logical
I/O of the safe field device (F-Devices))

n Maximum of 100 PROFIsafe devices per SIL3 safety function
n Maximum of 1000 PROFIsafe devices per SIL2 safety function

14.3 FSoE
FSoE (Fail Safe over EtherCAT) is a safety protocol for SIL3
according to IEC 61508 developed for EtherCAT.

Applicable safety standards

Fieldbuses and network variables
FSoE

17.07.2017 257

Fundamentals
n [N3.5.4] ETG: Safety over EtherCAT Protocol specification

(ETG.5100), Version 1.2.0 , 11-Mar-2011
n [N3.5.5] ETG: Safety over EtherCAT Implementation Guide

(ETG.5101), Version 1.1.1, 14-May-2010"
Term definitions

Safety Device is a safe, local field device that supports FSoE
communication.

Modular EtherCAT devices: EtherCAT devices are possible that
have multiple parallel FSoE connections at the same time. In this
case, there is one EtherCAT device object in the device tree of the
CODESYS project, which is connected to several logical devices of
the safety application. One of the FSoE connections of the
EtherCAT device is configured and managed via each logical
device.

NOTICE!
The user must note the fieldbus-specific system
requirements (see Ä Chapter 14.3.3 “FSoE spe-
cific evidence for the acceptance” on page 261 and
other general system requirements), for example
when implementing as FSoE only on connected
devices (electrical safety, e.g. according to IEC
60204-1) [N3.5.4-Sec.9.2], but not on couplers and
other devices in the communication path [N3.5.4-
Sec. 9.5.1].

NOTICE!
If the Ethernet used for EtherCAT is not restricted
to the machinery, then the connection IDs in the
entire reachable communication network must be
unique according to FSoE standard IEC
61784-3-12.

CAUTION!
Residual error rate
The FSoE specification requires that communica-
tion errors reported by the driver instance do not
occur more frequently than one time in five hours.
In this way, the residual error rate per hour for
safety-related signals remains below the SIL3 limit
value of 10-9.

Limitation of number of connections per fieldbus

System Requirements

Fieldbuses and network variables
FSoE

17.07.2017258

In an EtherCAT fieldbus, a maximum of 65,535 FSoE connections
are possible, regardless of the number of safety controllers in the
fieldbus. (This number results from the value range of the unique
connection ID.) The maximum number of FSoE devices in the
fieldbus is less, if a FSoE device reserves several FSoE connec-
tions at once.

14.3.1 Library Safety FSoEMaster
For SoE devices, the driver function block FSoEMaster is used
from the library SafetyFSoEMaster. For a general description of
driver function blocks, see Ä Chapter 14.1 “General section”
on page 247. The detailed description of the function block (inter-
face, behavior, diagnostics) is found in the online help.

The version of the function block as described here
corresponds to the latest version of the function
block in the version list Ä Chapter 15.1.3 “Driver
Libraries” on page 270.

CAUTION!
When using FSoE devices, please note the gen-
eral safety notes for library function blocks
(Ä Chapter 15.1.1 “Notes About Version Lists”
on page 267) and the safety notes for driver func-
tion blocks (Ä Chapter 14.1 “General section”
on page 247). For this purpose, the StartReset
input corresponds to the <auto-acknowledge
startup error> input and the AutoReset input to the
<auto-acknowledge interruption> input.
The input “Reset” corresponds to the input
<acknowledgment-edge> for manual acknowledg-
ment. See Ä “Input for acknowledgment edge
(manual acknowledgment)” on page 250.

In the application the FSoEMaster function block is used for
n Change the default values
n Confirm errors manually
n Diagnosis of the connection to a safety device
To do this the corresponding instance of the FSoEMaster function
block must be made visible in a program by means of
VAR_EXTERNAL <device name>: FSoEMaster .

Using the FB instance (driver
instance)

Fieldbuses and network variables
FSoE > Library Safety FSoEMaster

17.07.2017 259

Fig. 104: POU FSoEMaster

14.3.2 FSoE parameters
The FSoE parameters are located in the “Safe configuration” tab
of the respective logical I/O of the Safety Device.

NOTICE!
The general notes on safe parameterization and
safe configuration in Ä Chapter 5.5.4.2.3.2 “Safe
parameterization and safe configuration ”
on page 72 are to be observed.

CAUTION!
For EtherCAT devices with several parallel FSoE
connections, each one must have its own FSoE
address specified. These different FSoE addresses
of the same EtherCAT device must not be con-
fused.

Setting of addresses that are assigned when planning the com-
plete system (Ä Chapter 4 “Planning the overall system”
on page 29), and connection IDs and watchdog times that are nec-
essary for the response times of the safety functions:
n “FSoE address”

– Address of the Safety Device (FSoE Slave)
(Position of the DIP switch),

– The “Value” field is editable.

CAUTION!
Address (“FSoE address”) must be unique within
the EtherCAT fieldbus (even for several safety con-
trollers in the same fieldbus)

n “Connection ID”
– The “Value” field is editable.

Fieldbuses and network variables
FSoE > FSoE parameters

17.07.2017260

CAUTION!
Connection ID (“Connection ID”) for the safety
device must be unique within the EtherCAT
fieldbus (even for several safety controllers in the
same fieldbus)
For topology T2 when several safety controllers
are used below the same EtherCAT master: The
uniqueness of the FSoE connection IDs must be
guaranteed in the entire EtherCAT network of the
EtherCAT master.

n “WatchdogTime”
– The “Value” field is editable.

The parameters listed here are the FSoE communication parame-
ters. These can still be followed by device-specific parameters
(FSoE application parameters).
The variant of FSoE application parameters, which are transferred
to the device not via the safety controller but over FoE services, is
not supported.

14.3.3 FSoE specific evidence for the acceptance
Proof must be provided upon acceptance of a safety application
for:
n Unique FSoE address of every FSoE device (“FSoE address”

in the “Safe configuration” tab of the logical I/O of the safe field
device) in the plant

n Unique connection ID in all logical devices in the plant
(“Connection ID” input field in the “Safe configuration” tab of
the logical I/O of the safe field device.

n The operating manual for the machinery requires that the oper-
ator monitors the communication error rate. Communication
errors reported by the driver instance shall not occur more
often than one time in five hours. In this way, the residual error
rate per hour for safety-related signals remains below the SIL3
limit value of 10-9.

14.4 Network variables

CAUTION!
Residual error rate
Communication errors reported by the driver
instance shall not occur more frequently than one
time in five hours. In this way, the residual error
rate per hour for safety-related signals remains
below the SIL3 limit value of 10-9.

System Requirements

Fieldbuses and network variables
Network variables

17.07.2017 261

The network where unique safety addressing is guaranteed must
be delimited unambiguously and shall not be modified without a
new uniqueness check:
Commissioning engineers and operators are permitted to establish
a physical connection, or a connection by network devices
(switches, routers, PCs), between the machine network N1 (over
which safety controllers communicate) and another network N2, if
and only if the following requirements are fulfilled for the entire net-
work N* (where N1 and N2 are located) that is in principle reach-
able via N2 per UDP/IP:
n Commissioning engineers and operators know all safety con-

trollers in N*.
n Commissioning engineers and operators know all of the safety

addresses that they use – and these are all unique, including
their addresses in N1.

n Commissioning engineers and operators have employed
organizational measures for the network N* to assure unique-
ness for future changes in or to N*. This refers to changing a
cross-communicating safety controller (also outside N1 and
N2), adding cross-communicating safety controller below main
controllers in N*, and the connection of N* to other machine
networks.

CAUTION!
Networks that do not fulfill the cited requirements
must be separated from the machine network N1.
In specific, the machine network must never be
connected to the Internet or to a company network
that is connected to the Internet. (In addition to
address uniqueness, the required suitability for
industrial use also opposes this.) And also the
machine networks of identically constructed serial
machines with cross-communication shall never be
connected, or be inserted into the same superordi-
nate network, because they contain the identical
safety applications and therefore the safety
addressing would not be unique within N*.

CAUTION!
If cross-communication is used in the machinery
(T3), then the used Ethernet must be separated
from all other networks. The separation must be
physical. Simple filtering of the IP traffic between
N1 and N2 (for example, by corresponding config-
ured routers or firewalls) does not represent ade-
quate separation for SIL3 applications.

Fieldbuses and network variables
Network variables

17.07.2017262

CAUTION!
The uniqueness must be checked, not only one
time during the development or commissioning of
the machinery. The check must also be repeated
every time when new controllers are connected to
the UDP network with cross-communicating safety
controllers, or when the UDP network is connected
to a superordinate or subordinate UDP network.

NOTICE!
The user must note all specific and general system
requirements.

Limitation of NVL number in the project
The number of network variable lists in a project is restricted by
CODESYS to 100 safety network variable lists (sender) and 20
safety network variable lists (receiver) per sender.

NOTICE!
The specification is not fulfilled when the collection
of all NVL connections between the same two
safety controllers results in more than 100 commu-
nication relationships between safety controllers.

14.4.1 Library 'SafetyNetVar'
For safety NVL receivers and safety NVL senders, the driver func-
tion blocks NetVarReceiver and NetVarSender, respectively, are
used from the library SafetyNetVar. For a general description of
driver function blocks, see Ä Chapter 14.1 “General section”
on page 247. The detailed description of the function block (inter-
face, behavior, diagnostics) is found in the online help.

The version of the function block as described here
corresponds to the latest version of the function
block in Ä Chapter 15.1.2 “Applicative libraries”
on page 267.

Fieldbuses and network variables
Network variables > Library 'SafetyNetVar'

17.07.2017 263

CAUTION!
Safety NVL (receiver)
When using safety NVL receivers, please note the
general safety notes for library function blocks
(Ä Chapter 15.1.1 “Notes About Version Lists”
on page 267) and the safety notes for driver func-
tion blocks (Ä Chapter 14.1 “General section”
on page 247). For this purpose, the input
“StartReset” corresponds to the input <auto-
acknowledge startup error> for automatic acknowl-
edgment of errors at startup, and the input
“AutoReset” corresponds to the input <auto-
acknowledge interruption> for automatic acknowl-
edgment after interruptions.
The input “Reset” corresponds to the input
<acknowledgment-edge> for manual acknowledg-
ment. See Ä “Input for acknowledgment edge
(manual acknowledgment)” on page 250.

CAUTION!
Safety NVL Sender
When using safety NVL senders, please note the
general safety notes for library function blocks
(Ä Chapter 14.1 “General section” on page 247).

Fig. 105: POU NetVarReceiver

Fig. 106: POU NetVarSender

Fieldbuses and network variables
Network variables > Library 'SafetyNetVar'

17.07.2017264

14.4.2 Safety NetVar parameters
Setting of addresses that are assigned when planning the com-
plete system, and connection IDs and watchdog times that are
necessary for the response times of the safety functions:
n “Safety address”

Address of the safety network variable list (sender)
Input field “Safety address of this variable list” in the object
“Safety network variable list (sender)” , tab “Safety
configuration”

CAUTION!
The address (“Safety address”) of each safety net-
work variable list must be unique throughout the
project, in the entire network, and in all controllers
that are reached via UDP/IP.

n “Max. receivers”
Maximum number of safety network variable lists (receiver)
that can receive values from this safety network variable list
(sender) at the same time

n “Connection ID”
Safety NVL connection ID
In the object “Safety network variable list (receiver)” , tab
“Safety configuration”

CAUTION!
Connection ID (“Connection ID”) for the safety net-
work variable list must be unique throughout the
project.
For topology T3: The uniqueness of the network
variable lists and connection IDs of all safety con-
trollers in the network of the entire machine must
be guaranteed.

n “Watchdog time”

14.4.3 Safety NetVar specific evidence for the acceptance
Proof must be provided upon acceptance of a safety application
for:
n Unique safety address of each sender network variable list

(input field “Safety address of this variable list” in object
“Safety network variable list (sender)” , tab “Safety
configuration”) in the entire network.

n Unique connection ID of each receiver network variable list (in
object “Safety network variable list (receiver)” , tab “Safety
configuration”) in the entire network.

Fieldbuses and network variables
Network variables > Safety NetVar specific evidence for the acceptance

17.07.2017 265

n The operating manual for the machine requires that the oper-
ator monitors the communication error rate. Communication
errors reported by the driver instance NetVarReceiver shall not
occur more often than one time in five hours. In this way, the
residual error rate per hour for safety-related signals remains
below the SIL3 limit value of 10-9.

n The operating manual for the machinery requires that the oper-
ator verifies again the uniqueness of network variable lists,
safety addresses, and connection IDs during the update of
safety applications or extensions of the network.

Fieldbuses and network variables
Network variables > Safety NetVar specific evidence for the acceptance

17.07.2017266

15 Predefined function blocks
The predefined CODESYS Safety POUs are organized in libraries.
Description of the POUs are found in the online help. When using
this, please note the correct version at the end and the safety
notes.

15.1 Version list of the function blocks
15.1.1 Notes About Version Lists

CAUTION!
The version of each library function block linked in
the application must agree with the documented
version of the function block (see online help and
the latest entry in the “Version” column).

CAUTION!
If the “Valid” column for a certain version of a func-
tion block contains "No", then this version of the
function block may no longer be used.

15.1.2 Applicative libraries
For each function block, the safety notes for consideration are
listed. For general guidelines for safety-oriented function blocks,
see Ä Chapter 6.2.4 “Design rules for PLCopen-compliant function
blocks” on page 97. For specific safety notes for function blocks,
see Ä Chapter 15.2 “Specific Safety Notes for Applicative Library
Function Blocks” on page 271.

Block Version Valid Comment

SF_CTD 1.0.0.0 Yes

SF_CTU 1.0.0.0 Yes

SF_CTUD 1.1.1.0 Yes A rising edge at one of the inputs CU or CD
triggers the corresponding count procedure,
even if the other input is already set to TRUE.

1.0.0.0 No Ä Note Lib_2 (valid)

SF_F_TRIG 1.0.0.0 Yes Ä Note Lib_4 (SF_F_TRIG)

SF_R_TRIG 1.0.0.0 Yes

Note Lib_1 (version)

Note Lib_2 (valid)

SafetyStandard safety library

Predefined function blocks
Version list of the function blocks > Applicative libraries

17.07.2017 267

Block Version Valid Comment

SF_RS 1.0.0.0 Yes

SF_SR 1.0.0.0 Yes

SF_TOF 1.0.0.0 Yes

SF_TON 1.0.0.0 Yes

SF_TP 1.0.0.0 Yes

NOTICE!
When using each function block for monitoring or
controlling a safety component, please also con-
sider the requirements of the corresponding
product standards.

Block Version Valid Comment

SF_Antivalent 1.0.0.0 Yes Ä Rule FB1 (S_StartReset)

Ä Rule FB2 (S_Start_Reset)

Ä Rule FB5 (Reset)

Ä Note Lib_5 (TIME inputs)

SF_EDM 1.0.0.0 Yes Ä Note Lib_5 (TIME inputs)

SF_EmergencyStop 1.0.0.0 Yes Ä Rule FB1 (S_StartReset)

Ä Rule FB2 (S_Start_Reset)

Ä Rule FB3 (S_AutoReset)

Ä Rule FB4 (S_AutoReset)

Ä Rule FB5 (Reset)

SF_EnableSwitch 1.0.0.0 Yes Ä Rule FB3 (S_AutoReset)

Ä Rule FB4 (S_AutoReset)

Ä Rule FB5 (Reset)

SF_Equivalent 1.0.0.0 Yes Ä Note Lib_5 (TIME inputs)

SF_ESPE 1.0.0.0 Yes Ä Rule FB1 (S_StartReset)

Ä Rule FB2 (S_Start_Reset)

Ä Rule FB3 (S_AutoReset)

Ä Rule FB4 (S_AutoReset)

Ä Rule FB5 (Reset)

SafetyPLCopen safety library

Note Lib_3 (product standards)

Predefined function blocks
Version list of the function blocks > Applicative libraries

17.07.2017268

Block Version Valid Comment

SF_GuardLocking 1.0.0.0 Yes Ä Rule FB1 (S_StartReset)

Ä Rule FB2 (S_Start_Reset)

Ä Rule FB3 (S_AutoReset)

Ä Rule FB4 (S_AutoReset)

Ä Rule FB5 (Reset)

SF_GuardMonitoring 1.0.0.0 Yes Ä Rule FB1 (S_StartReset)

Ä Rule FB2 (S_Start_Reset)

Ä Rule FB3 (S_AutoReset)

Ä Rule FB4 (S_AutoReset)

Ä Rule FB5 (Reset)

Ä Note Lib_5 (TIME inputs)

SF_ModeSelector 1.1.0.0 Yes In case of a change of mode within status
8004 and subsequent setting of S_Unlock to
TRUE, the FB no longer switches to status
8000 (reset outputs), but to status 8005
(waiting for activation)
In status 8005 the expired time for checking
against ModeMonitorTime is reset with each
change of mode.
Ä Note Lib_5 (TIME inputs)

Ä Note Lib_6 (AutoSetMode)

Ä Rule FB5 (Reset)

1.0.0.0 No Ä Note Lib_2 (valid)

SF_MutingPar 1.1.0.0 Yes S_AOPD_In = FALSE in the statuses 8014,
8114, 8314 and 8414 does not cause an error
(see also corresponding note in description of
the function block.)
MutingEnable = FALSE in status 8000 does
not cause an error
Ä Rule FB1 (S_StartReset)

Ä Rule FB2 (S_Start_Reset)

Ä Rule FB5 (Reset)

Ä Note Lib_5 (TIME inputs)

Ä Note Lib_8 (emergency S_AOPD_In)

1.0.0.0 No Ä Note Lib_2 (valid)

SF_MutingPar_2Sensor 1.0.0.0 Yes Ä Rule FB1 (S_StartReset)

Ä Rule FB2 (S_Start_Reset)

Ä Note Lib_5 (TIME inputs)

Ä Note Lib_9 (muting sensor signals)

Predefined function blocks
Version list of the function blocks > Applicative libraries

17.07.2017 269

Block Version Valid Comment

SF_MutingSeq 1.0.0.0 Yes Ä Rule FB1 (S_StartReset)

Ä Rule FB2 (S_Start_Reset)

Ä Rule FB5 (Reset)

Ä Note Lib_5 (TIME inputs)

Ä Note Lib_7 (muting sensor signals)

SF_OutControl 1.0.0.0 Yes Ä Rule FB1 (S_StartReset)

Ä Rule FB2 (S_Start_Reset)

Ä Rule FB3 (S_AutoReset)

Ä Rule FB4 (S_AutoReset)

Ä Rule FB5 (Reset)

Ä Note Lib_11 (StaticControl)

SF_SafetyRequest 1.0.0.0 Yes Ä Rule FB5 (Reset)

Ä Note Lib_5 (TIME inputs)

Ä Note Lib_10 (safety function)

SF_TestableSafetySensor 1.0.0.0 Yes Ä Rule FB1 (S_StartReset)

Ä Rule FB3 (S_AutoReset)

Ä Rule FB4 (S_AutoReset)

Ä Rule FB5 (Reset)

Ä Note Lib_3 (product standards)

Ä Note Lib_5 (TIME inputs)

SF_TwoHandControlTypeII 1.0.0.0 Yes

SF_TwoHandControlTypeIII 1.0.0.0 Yes

15.1.3 Driver Libraries
For each function block, the safety notes for consideration are
listed. Please refer to Ä Chapter 14.1 “General section”
on page 247.

Block Version Valid Comment

ProfisafeHost 1.0.0.0 Yes Ä Note Drv_1 (start of the application)

Ä Note Drv_2 (communication error at start)

Ä Note Drv_3 (input for automatic acknowl-
edgment after interruption)

Ä Note Drv_4 (acknowledgment edge)

SafetyProfisafeHost safety library

Predefined function blocks
Version list of the function blocks > Driver Libraries

17.07.2017270

Block Version Valid Comment

FSoEMaster 1.1.1.0 Yes Ä Note Drv_1 (start of the application)

Ä Note Drv_2 (communication error at start)

Ä Note Drv_3 (input for automatic acknowl-
edgment after interruption)

Ä Note Drv_4 (acknowledgment edge)

Block Version Valid Comment

NetVarReceiver 1.2.0 Yes Ä Note Drv_1 (start of the application)

Ä Note Drv_2 (communication error at start)

Ä Note Drv_3 (input for automatic acknowl-
edgment after interruption)

Ä Note Drv_4 (acknowledgment edge)

NetVarSender 1.2.0 Yes

NetVarSenderStack 1.2.0 Yes Internal block, not accessible in the application

15.2 Specific Safety Notes for Applicative Library Function Blocks
Affects: SF_F_TRIG

CAUTION!
Special behavior of the function block in the
1st cycle
In the first cycle SF_F_TRIG recognizes a falling
edge when FALSE is applied and sets the output Q
to TRUE. This behavior conforms to the F_TRIG of
IEC 61131-3 from edition2. It therefore deviates
from the behavior of the F_TRIG function block of
Standard CODESYS, which complies with IEC
61131-3 edition1.

Affects: SF_Equivalent, SF_Antivalent, SF_GuardMonitoring,
SF_ModeSelector, SF_SafetyRequest, SF_EDM, SF_TestableSa-
fetySensor, SF_MutingSeq, SF_MutingPar,
SF_MutingPar_2Sensor

SafetyFSoEMaster safety library

SafetyNetVar safety library

Note Lib_4 (SF_F_TRIG)

Note Lib_5 (TIME inputs)

Predefined function blocks
Specific Safety Notes for Applicative Library Function Blocks

17.07.2017 271

CAUTION!
TIME inputs
For developers in extended level: All TIME inputs
must can be activated with constant values only.
This means that the value cannot be changed for
the calls.
Affected inputs: DiscrepancyTime, DiscTimeEntry,
DiscTime11_12, DiscTime21_22, MonitoringTime,
ModeMonitoringTime, MaxMutingTime, TestTime

Affects: SF_ModeSelector

CAUTION!
AutoSetMode
The input AutoSetMode should be activated only if
it is guaranteed that no hazard can occur when the
safety controller is started.

Affects: SF_MutingSeq, SF_MutingPar

CAUTION!
Any short circuit of the muting sensor signals or
functional application error when supporting these
signals is not supported by this function block.
Instead, it is interpreted as an incorrect muting
sequence (data type BOOL (non-safe), provided
by the functional user hardware or software). It
must be guaranteed that any such case does not
lead to unwanted muting. Users should consider
this in their respective risk analyses.

Affects: SF_MutingPar

NOTICE!
The implementation of the state model deviates
from the PLCopen specification 1.0 [N2.1.1] in one
case: With FALSE at the input S_AOPD_In,
switching to the state SafetyDemand AOPD occurs
also when muting is active (states 8012, 8021,
8112, 8121).

Affects: SF_MutingPar_2Sensor

Note Lib_6 (AutoSetMode)

Note Lib_7 (muting sensor signals)

Note Lib_8 (emergency
S_AOPD_In)

Note Lib_9 (muting sensor signals)

Predefined function blocks
Specific Safety Notes for Applicative Library Function Blocks

17.07.2017272

NOTICE!
Line control of the muting sensor signals must be
active in the safety loop.

Affects: SF_SafetyRequest

CAUTION!
The safety function is performed independently by
the connected safe peripherals (e.g. for a drive:
hard stop, torque OFF, limited position, limited
velocity). For this purpose, the function block
SF_SafetyRequest initiates the demand only and
monitors it. The function block does not define the
parameters of the connected safe peripherals. The
behavior of the safe peripherals in case of the
demand must be defined to other device-specific
paths (e.g. I parameter of PROFIsafe devices).
Please make sure that the safety function triggered
by SF_SafetyRequest is appropriate for the current
situation.

Affects: SF_OutControl

CAUTION!
StaticControl
The input StaticControl should be activated only if
it is guaranteed that no hazardous situation can
occur when the safety controller starts.

Note Lib_10 (safety function)

Note Lib_11 (StaticControl)

Predefined function blocks
Specific Safety Notes for Applicative Library Function Blocks

17.07.2017 273

Predefined function blocks
Specific Safety Notes for Applicative Library Function Blocks

17.07.2017274

16 List of permitted or modified functions

NOTICE!
The functions marked with an asterisk (*) are crit-
ical and must not be used in a customized, unvali-
dated installation.

16.1 Permitted commands

Commands in the 'Safety application and task' category
All commands

Commands of the 'Safety declarations' category
All commands

Commands in the 'Safety FBD' category
All commands

Commands in the 'Safety online' category *
All commands

Commands in the 'Online' category *
“Login” “Logout”

“Create boot application” “Reset cold ”

“Start (active application)” “Stop (active application)”

“Start (selected application)” “Stop (selected application)”

“Write values (active application)” “Force values (active application)”

“Unforce values” “Add all forces to watch list”

“Release force list” “Flow control (active application)”

“Binary” “Add to watch list”

“Hexadecimal” “Decimal”

Permitted menu commands

List of permitted or modified functions
Permitted commands

17.07.2017 275

Commands in the 'File' category
“Compare” “Extract archive”

“Save/send archive” “Exit”

“New project” “Open project”

“Close project” “Save project”

“Save project as” “Project information”

“Project settings”

Commands in the 'Print' category *
“Document” “Print”

Commands in the 'Browse project' category *
“Browse cross-references” “Go to definition”

Commands in the 'Build' category
“Build” “Clean”

“Clean all - Attention!” “Check library compatibility”

“Check all pool objects” “Rebuild”

Commands in the 'Help' category
“Show safety version information” “Contents”

“Search” “Index”

“About” “3S homepage”

Commands in the 'Smart coding' category
“Input Assistant” “Auto Declare”

Commands in the 'Bookmarks' category
“Toggle bookmarks” “Clear bookmarks”

“Next bookmark” “Previous bookmark”

List of permitted or modified functions
Permitted commands

17.07.2017276

Commands in the 'Clipboard' category
“Select all” “Cut”

“Paste” “Copy”

“Delete”

Commands in the 'Undo/Redo' category
“Undo” “Redo”

Commands in the 'Find/Replace' category
“Replace” “Find”

“Find previous” “Find previous (selected)”

“Find next” “Find next (selected)”

Commands in the 'Messages view' category
“Go to source position” “Next message”

“Previous message”

Commands in the 'Preferences' category
“Customize” “Options”

Commands in the 'User management' category
“User logon” “User logoff”

“Permissions”

Commands in the 'View' category
“Properties” “Devices”

“Messages” “POUs”

“Cross-reference list” “Safety cross reference list”

“Watch 2” “Watch 1”

“Watch 4” “Watch 3”

“Watch all forces” “Toolbox”

List of permitted or modified functions
Permitted commands

17.07.2017 277

Commands in the 'Objects' category
“Edit object” “Add object”

“Export” “Import”

“Set active application” “Edit object with”

“Edit object (offline)” “Add folder”

Commands in the 'Device communication' category
“Change device name”

Commands in the 'Devices' category
“Device Repository” “Update device”

Commands in the 'Installation' category
“Library Repository” “Package Manager”

16.2 Permitted views

Permitted editors, their tabs and
control elements

List of permitted or modified functions
Permitted views

17.07.2017278

Table 16: Safety PLC editor
Tab Control element

“Communication”

Note: The “Use classic display of the
communication settings” option in “Tools
è Options” (“Device editor” category) must be acti-
vated.

Originally from CODESYS basis. Permitted only for
the control elements listed below:
n Drop-down lists

– “Select network path to controller”
– “Filters”
– “Sort order”

n Buttons
– “Set active path”
– “Add gateway”
– “Add devices”
– “Scan network”

n Options
– “Don't store communication settings in

project”
– “Confirmed online mode”

“Log” Originally from CODESYS basis; therefore it may
vary. Permitted only for the control elements listed
below:
n Option

“Offline recording”
n Option

“UTC time”
n Drop-down list for components
n Drop-down list “Logger”
n Buttons: , , , ,

“Safety Online Information” * All control elements

“Status” Originally from CODESYS basis; therefore it may
vary. Permitted only for the control elements listed
below:
Control element: “Confirm” button

“Information” Originally from CODESYS basis; therefore it may
vary. Contains information only

List of permitted or modified functions
Permitted views

17.07.2017 279

Table 17: Object 'Library Manager'
Window Control element

Command bar above window Buttons:
n “Add library”
n “Delete library”
n “Properties”

“Details”
“Placeholders”

n “Library Repository”

List of integrated libraries

List POUs of the selected library Sorting and search functions

Details about the POUs with the “Inputs/Outputs” ,
“Graphical” , “Documentation” tabs

Table 18: Comparison editor *
Control element: “Print comparison” button

Table 19: Editors from safety application object, safety task, safety global variable list
All control elements

Table 20: Editors of safety POU *
All control elements except the magnification function

Table 21: Device editor of logical I/Os
Tab Control element

“Safe configuration” * All control elements

“Safe parameterization” * All control elements

“I/O mapping” * All control elements

“Information” Originally from CODESYS basis; therefore it may
vary. Contains information only.

Table 22: Editor of the safety network variable list (receiver) *
Tab Control element

Area outside the tabs All control elements

“Safety configuration” All control elements

“PLC network” All control elements

List of permitted or modified functions
Permitted views

17.07.2017280

Table 23: Editor of the safety network variable list (sender) *
Tab Control element

Area outside the tabs All control elements

“Safety configuration” All control elements

“PLC network” All control elements

Table 24: View 'Devices'
Originally from CODESYS basis; it may vary.

Table 25: View 'POUs'
Originally from CODESYS basis; it may vary.

Table 26: View 'Messages'
Control elements n

n Drop-down list with message categories
n Message types:

– : Error
– : Warning
– : Message

Table 27: View 'Safety cross reference list'
All control elements

Table 28: View 'Properties'
Tabs

“Common” : Input field for changing the object identifier

“Access control” : All control elements

“Safety” : All control elements

Table 29: View 'Watch'
“Watch 1”

“Watch 2”

“Watch 3”

“Watch 4”

“Watch all forces”

Views ('View' menu)

List of permitted or modified functions
Permitted views

17.07.2017 281

Permitted FBD tools (FBD, view “ToolBox”)

“General” “Assignment”

“Input”

“Jump”

“Return”

“Boolean operators” “AND (2 inputs)”

“AND (3 inputs)”

“OR (2 inputs)”

“OR (3 inputs)”

“XOR”

“NOT”

“Mathematical operators” “ADD (2 inputs)”

“ADD (3 inputs)”

“SUB”

“MUL”

“DIV”

“EQ”

“NE”

“LT”

“LE”

“GT”

“GE”

“Other operators” “SEL”

“MUX”

Safety function blocks All

Safety “Standard” FBs All

Table 30: Dialog 'Options'
All categories are permitted.
In the following categories, certain options must be activated:

Category “Device editor” The option
“Use classic display of the communication settings”
must be activated-

Permitted tools

Dialogs in the 'Tools' menu

List of permitted or modified functions
Permitted views

17.07.2017282

Table 31: Dialog 'Customize'
All control elements

16.3 Modified standard functions

When the command is used on non-safety objects, its behavior is
normal according to CODESYS; cross-references are listed in the
“Cross-reference” view. When the command is used on safety
objects, the cross-references are listed in the “Safety cross
reference list” view.

Cross references in safety objects are not listed in this view.
In contrast, in the “Safety cross reference list” view, only cross ref-
erences can be found in safety objects, not in standard objects. For
information about this functionality, please refer to the CODESYS
Safety online help.

If the project contains at least one safety object, then a fixed ver-
sion of CODESYS is used for the release of CODESYS Safety. For
example, it could be that new functions of the document selection
dialog from the CODESYS basis are no longer available . This
function no longer corresponds to the description in the online help
of CODESYS, rather only to the description in the online help of
CODESYS Safety.

If the project contains at least one safety object, then a fixed ver-
sion of the archive selection dialog is used for the release of
CODESYS Safety. For example, it could be that new functions of
the archive selection dialog from the CODESYS basis are no
longer available . This function no longer corresponds to the
description in the online help of CODESYS, rather only to the
description in the online help of CODESYS Safety.
Clicking “File è Project archive è Save/send archive” for
selecting a logical device of the safety application archives all cor-
responding safety-related device descriptions at the same time. If
the library manager is archived with the safety variant, then all ref-
erenced libraries are archived with it.

Command 'Browse Cross Refer-
ences'

View 'Cross-reference list'

Command 'Document'

Commands 'Save/Send Archive'

List of permitted or modified functions
Modified standard functions

17.07.2017 283

List of permitted or modified functions
Modified standard functions

17.07.2017284

17 IEC 61131-3 Compliance

IEC 61131-3 Compliance

17.07.2017 285

IEC 61131-3 Compliance

17.07.2017286

IEC 61131-3 Compliance

1 Zusammenfassung der Erweiterungen zur IEC 61131-3

Es gibt nur die folgenden Erweiterungen über die IEC hinaus:

Bereich Erweiterungen der IEC Begründung

Datentypen sicherheitsgerichtete Datentypen SAFEBOOL,
SAFEINT, etc. für alle unterstützen IEC Datentypen.

Für PLCopen: Datentyp zur
Unterscheidung sicherer Signale

generische
Datentypen /
Funktionen

Jeder Datentyp SAFEX wird neben X in de
Hierarchie der generischen Datentypen [N1.1.3-
Tab.11] eingereiht.

Das heißt, die generischen Funktionen (AND, ADD,
SEL, EQ, etc.), die u.a. auf Typ X definiert sind,
sind analog auch auf Typ SAFEX definiert.

Für PLCopen: Generische Funktionen
auf Typ X machen genauso Sinn auf
Typ SAFEX. Es müssen keinen neuen
Funktionen „erfunden“ werden.

Zusätzliche Varianten der Funktion „AND“, die nicht
dem generischen Typschema entspricht:

AND: BOOL x SAFEBOOL → SAFEBOOL
AND: SAFEBOOL x BOOL → SAFEBOOL

Für PLCopen: „confirmation
functionality“ bzw. „enabeling function“

Konvertierungsfunktionen A_TO_B sind generisch
bzgl. der SAFE-Qualifikation:

A_TO_B : A → B
A_TO_B: SAFEA → SAFEB

Analogie zu generischen Funktionen:
ADD auf INT und auf TIME wird als eine
Funktion verstanden, weil das gleiche
passiert; erspart dem Anwender,
unterschiedliche Funktionsnamen
hinzuschreiben (ADD_INT, ADD_TIME).

Auch bei INT_TO_BOOL auf INT/BOOL
wie auf SAFEINT/SAFEBOOL passiert
das gleiche; es bringt nichts, zwischen
INT_TO_BOOL und
SAFEINT_TO_SAFEBOOL zu
differenzieren.

implizite
Konver-
tierungen

Daten vom Typ SAFEX können auf Variablen oder
Eingänge vom Typ X zugewiesen werden („SAFE-
Polymorphie“). U.a. ist auf diese Weise der Aufruf
der generischen Funktion ADD mit einem INT- und
einem SAFEINT-Wert möglich.

SAFEBOOL → BOOL

SAFEINT → INT

SAFEDINT → DINT

SAFETIME → TIME

SAFEBYTE → BYTE

SAFEWORD → WORD

SAFEDWORD → DWORD

Für PLCopen: SAFEX-Daten und X-
Daten sind nicht andersartige Daten,
sondern Daten mit unterschiedlicher
Integrität. Daten höherer Integrität
können verwendet werden, wo
niedrigere Integrität ausreicht.

Daten vom Typ INT bzw. SAFEINT können auf
Variablen oder Eingänge vom Typ DINT bzw.
SAFEDINT zugewiesen werden („INT-Polymorphie“)

INT → DINT

SAFEINT → SAFEDINT

Der Wertebereich von INT bzw.
SAFEINT ist enthalten im Wertebereich
von DINT bzw. SAFEDINT.

FB-Typen Statt den Standard-Funktionblöcken: SF_XXX
Varianten mit SAFE-Varianten der Inputs/Outputs
(bis auf Inputs mit Resetsemantik: RESET, LOAD
bzw. IN)

notwendig für Verarbeitung sicherer
Signale mit Standard-FBs

POEs POEs können qualifiziert werden, um ihren
Sprachumfang oder ihre Verwendung
einzuschränken:

• Level: Basic, Extended, External

Level: zur expliziten Unterscheidung
der PLCopen Programmierlevel.

Singlecall: Kennzeichnet FBs, für die
PLCopen-Regel „einmaliger Aufruf“ gilt.

IOAPI-only: reserviert FBs für System-

IEC 61131-3 Compliance

17.07.2017 287

IEC 61131-3 Compliance

• Singlecall

• IOAPI-only

zwecke (E/A-Anbindung)

Variablen-
deklarationen

In externen FBs: neuer Modifizierer SYSONLY.

In implizitem Code: neue Modifizierer IOIN, IOOUT,
IOAPI, SYSONLY.

Für Safety-spezifische Variablenarten

IEC 61131-3 Compliance

17.07.2017288

IEC 61131-3 Compliance

2 Compliance Liste: Unterstützte Features

Das IEC Compliance Statement muss auflisten, welche in den Tabellen von [N1.1.3] genannten
Features unterstützt werden [N1.1.3-Kap.1.5.1].

2.1 Compliance Statement: Common elements

Table
No.

Feature
No.

Feature description Bemerkung

1 2 Lower case characters

3a number sign

4a dollar sign

5a vertical bar

2 2 upper and lower case,
numbers, embedded
underlines

führende Underscores reserviert für impliziten Code,
CoDeSys Safety Schlüsselwörter und Standard CoDeSys
Schlüsselwörter reserviert, siehe 2.3

3 - Kommentare implizit gekennzeichnet

3a - keine Pragmas

4 1 integer literals der Typ der Literale ist SAFEINT bzw. SAFEDINT, je
nach Größe, statt INT bzw. DINT (Begründung:
Literalkonstanten sind Werte mit der höchst-möglichen
Integrität).

4 base 2 literals
6 base 16 literals
8 Boolean FALSE and TRUE der Typ der Literale ist SAFEBOOL statt BOOL

(Begründung: Literalkonstanten sind Werte mit der
höchst-möglichen Integrität).

9 typed literals Typpräfixe nicht ausgeweitet auf die SAFE-Varianten.
Literale mit Typpräfix X werden behandelt als Werte vom
Typ SAFEX (Begründung: Literalkonstanten sind Werte
mit der höchst-möglichen Integrität).

5 - keine Strings

6 - keine Strings

7 1a duration literals without
unterlines: short prefix

kein langer Prefix time#1s

2a duration literals with
unterlines: short prefix

kein langer Prefix time#1m_1s

8 - kein Datentyp DATE, TOD

9 keine Featuretabelle

10 1 BOOL

3 INT

4 DINT

12 TIME

17 BYTE

18 WORD

19 DWORD

11 keine Featuretabelle

12 - keine TYPE Deklarationen

13 keine Featuretabelle

14 - keine TYPE Deklarationen

15 - keine direkten Variablen

16 keine Featuretabelle

17 5 automatic memory allocation
of symbolic variables

18 5 initialization of symbolic
variables

9 initialization of constants

19 - keine graphische Input/Output-Negation ‚o’

19a - keine textuelle Sprache

20 - kein EN/ENO

20a 1 in-out variable declaration
(textual)

nur bei externen FBs, Aufruf nur impliziter Code

21 1 overloaded functions

22 1 *_TO_** Keine eigenen Konvertierungsfunktionen für SAFE-

IEC 61131-3 Compliance

17.07.2017 289

IEC 61131-3 Compliance

Typen, dafür ist jede Konvertierungsfunktion A_TO_B
generisch bzgl. SAFE:

A_TO_B : A → B
A_TO_B: SAFEA → SAFEB

Liste der Varianten [N1.1.3-Tab.22(a)]:

'BOOL_TO_INT', 'INT_TO_BOOL'

'BOOL_TO_DINT', 'DINT_TO_BOOL'

'BOOL_TO_TIME', 'TIME_TO_BOOL'

'BOOL_TO_WORD', 'WORD_TO_BOOL'

'INT_TO_DINT', 'DINT_TO_INT'*

'INT_TO_TIME'*, 'TIME_TO_INT'*

'INT_TO_WORD', 'WORD_TO_INT'

'DINT_TO_TIME'*, 'TIME_TO_DINT'*

'DINT_TO_WORD'*, 'WORD_TO_DINT'

'TIME_TO_WORD'*, 'WORD_TO_TIME'

'BYTE_TO_INT', 'INT_TO_BYTE'*

'BYTE_TO_DINT', 'DINT_TO_BYTE'*

'BYTE_TO_TIME', 'TIME_TO_BYTE'*

'BYTE_TO_WORD', 'WORD_TO_BYTE'*

 'INT_TO_DWORD'

'DWORD_TO_DINT', 'DINT_TO_DWORD'

'DWORD_TO_TIME', 'TIME_TO_DWORD'

 , 'WORD_TO_DWORD'

* führen ggf. zu Laufzeitfehlern (siehe 4.2)

23 - kein ABS, LOG, SIN, etc.

24 12n ADD vollständig überladen (ANY_NUM, dazu TIME gem. #30)
13n MUL vollständig überladen (ANY_NUM, dazu TIME gem. #30)
14n SUB vollständig überladen (ANY_NUM, dazu TIME gem. #30)
15n DIV vollständig überladen (ANY_NUM, dazu TIME gem. #30)

25 - keine Shift-Funktionen

26 5n AND (named representation) nur für BOOL/SAFEBOOL statt für alle ANY_BIT-Typen
6n OR (named representation) nur für BOOL/SAFEBOOL statt für alle ANY_BIT-Typen
7n XOR (named representation) nur für BOOL/SAFEBOOL statt für alle ANY_BIT-Typen,

nicht erweiterbar
8n NOT (named representation) nur für BOOL/SAFEBOOL statt für alle ANY_BIT-Typen

27 1 SEL vollständig überladen (ANY)

4 MUX vollständig überladen (ANY_INT, ANY)

28 5n GT (named representation) nur für ANY_MAGNITUDE, nicht für ANY_BIT
nur binär, nicht erweiterbar

6n GE (named representation) nur für ANY_MAGNITUDE, nicht für ANY_BIT
nur binär, nicht erweiterbar

7n EQ (named representation) vollständig überladen (ANY)
nur binär, nicht erweiterbar

8n LE (named representation) nur für ANY_MAGNITUDE, nicht für ANY_BIT
nur binär, nicht erweiterbar

9n LT (named representation) nur für ANY_MAGNITUDE, nicht für ANY_BIT
nur binär, nicht erweiterbar

10n NE (named representation) vollständig überladen (ANY)
29 - keine String Funktionen

30 1an ADD (named representation)
4an SUB (named representation)
10an MUL (named representation)
11an DIV (named representation)

31 - keine Enum Typen

32 keine Featuretabelle

33 4a VAR_IN_OUT declaration nur bei externen FBs

7a Function block instance name
as external variable (textual)

34 1* SR (*) nur die Safetyvariante SF_SR
2* RS (*) nur die Safetyvariante SF_RS

35 1* R_TRIG (*) nur die Safetyvariante SF_R_TRIG
2* F_TRIG (*) nur die Safetyvariante SF_F_TRIG

36 1a* CTU (*) nur die Safetyvariante SF_CTU

IEC 61131-3 Compliance

17.07.2017290

IEC 61131-3 Compliance

2a* CTD (*) nur die Safetyvariante SF_CTD
3a* CTUD (*) nur die Safetyvariante SF_CTUD

37 1* TP (*) nur die Safetyvariante SF_TP
2a* TON (*) nur die Safetyvariante SF_TON
3a* TOF (*) nur die Safetyvariante SF_TOF

38 keine Featuretabelle

39 22a VAR_EXTERNAL declarations within PROGRAM type declarations
22b VAR_EXTERNAL CONSTANT declarations within PROGRAM type declarations

40 bis
46

- kein SFC

47 keine Featuretabelle

48 keine Featuretabelle

49 3 RESOURCE … ON …
END_RESOURCE
construction

Die Applikation A unter Steuerung S entspricht
„RESOURCE A ON S“.

4 VAR_GLOBAL … END_VAR
construction within
RESOURCE

Codesys GVL entspricht VAR_GLOBAL auf
RESOURCE-Ebene in IEC 61131

5a Periodic TASK construction INTERVAL über Eingabefeld konfiguriert
6a WITH construction for

PROGRAM to TASK
association

Program P in Task T entspricht „PROGRAM P WITH T;“

12a VAR_GLOBAL CONSTANT …
END_VAR construction within
RESOURCE

Codesys GVL entspricht VAR_GLOBAL auf
RESOURCE-Ebene in IEC 61131

50 1a Textual declaration of periodic
TASK

Tabellarische Konfiguration entspricht eher textueller
Deklaration als grafischer

3a Textual association with
PROGRAMs

Tabellarische Konfiguration entspricht eher textueller
Deklaration als grafischer

Keine der Features aus Tabellen 51a bis 56 (Common textual elements, IL language elements, ST
language elements) werden unterstützt, da nur FBD unterstützt wird.

2.2 Compliance Statement: Common graphical elements

Table
No.

Feature
No.

Feature description Bemerkung

57 2 Horizontal lines: graphic or semigraphic normale Verbindung

4 Vertical lines: graphic or semigraphic wenn Verbindungen beim
automatischen Layout
abgeknickt werden

6 Horizontal/vertical connection bei Mehrfachzuweisung

12 Block with connected lines: graphic or semigraphic Aufruf Funktion/FB

58 1 Unconditional Jump: FBD language

3 Conditional Jump: FBD language

6 Conditional Return: FBD language

Keine der Features aus Tabellen 59 bis 62 (LD language elements) werden unterstützt, da nur FBD
unterstützt wird.
Für FBD definiert [N1.1.3] keine Feature-Tabellen (FBD language elements).

2.3 Liste zusätzlich reservierter Schlüsselwörter

Die zusätzlichen Schlüsselworte und vorsorglich reservierten Worte von CoDeSys Safety sind gelb
hinterlegt.
Bei den zusätzlichen Schlüsselworten von Standard CoDeSys wird unterschieden:

• die in der bevorstehenden Ausgabe 3 der IEC 61131-3 vorgesehen Schlüsselwörte sind nicht
hervorgehoben;

• die Standard IEC Operatoren, die spezifisch für die Sprache IL sind (und von Standard
CoDeSys über alle Sprachen hinweg reserviert werden) sind in grauer Schrift;

• die darüber hinausgehenden Schlüsselworte sind grün hinterlegt.

IEC 61131-3 Compliance

17.07.2017 291

IEC 61131-3 Compliance

Deklarationen,
Typkonstrukten

Datentypen Implementierungsteil

'ABSTRACT'
'CLASS'
 'END_CLASS'
'EXTENDS'
'FINAL'
'IMPLEMENTS'
'INTERFACE'
 'END_INTERFACE'
'INTERNAL'
'IOAPI'
'IOIN'
'IOOUT'
'METHOD'
 'END_METHOD'
'NAMESPACE'
 'END_NAMESPACE'
'OVERLAP'
'OVERRIDE'
'PERSISTENT'
'POINTER'
'PRIVATE'
'PROPERTY'
''PROTECTED'
'PUBLIC'
'REF_TO'
'SYSONLY'
'UNION'
 'END_UNION'
'VAR_STAT'

'BIT'
'CHAR'
'LDT'
'LTIME'
'LTOD'
'SF_CTD'
'SF_CTD_DINT'
'SF_CTD_LINT'
'SF_CTD_UDINT'
'SF_CTD_ULINT'
'SF_CTU'
'SF_CTU_DINT'
'SF_CTU_LINT'
'SF_CTU_UDINT'
'SF_CTU_ULINT'
'SF_CTUD'
'SF_CTUD_DINT'
'SF_CTUD_LINT'
'SF_CTUD_UDINT'
'SF_CTUD_ULINT'
'SF_SR'
'SF_F_TRING'
'SF_R_TRING'
'SF_RS'
'SF_TOF'
'SF_TON'
'SF_TP'

'SAFEBIT'
'SAFEBOOL'
'SAFEBYTE'
'SAFECHAR'
'SAFEDATE'
'SAFEDATE_AND_TIME'
'SAFEDINT'
'SAFEDT'
'SAFEDWORD'
'SAFELDT'
'SAFELINT'
'SAFELREAL'
'SAFELTIME'
'SAFELTOD'
'SAFELWORD'
'SAFEREAL'
'SAFESINT'
'SAFESTRING'
'SAFETIME'
'SAFEUDINT'
'SAFEUINT'
'SAFEULINT'
'SAFEUSINT'
'SAFETIME'
'SAFEWCHAR'
'SAFEWORD'
'SAFEWSTRING'
'WCHAR'

'ADR'
'ANDN'
'BITADR'
'CAL'
'CALC'
'CALCN'
'CONTINUE'
'INDEXOF'
'INI'
'JMP'
'JMPC'
'JMPCN'
'LD'
'LDN'
'NULL'
'ORN'
'R'
'REF'
'RET'
'RETC'
'RETCN'
'S'
'SIZEOF'
'ST'
'STN'
'SUPER'
'TEST_AND_SET'
'THIS'
'XORN'

Konvertierungen
von oder zu neuen
Basisdatentypen:

'BIT_TO_XXX'
'CHAR_TO_XXX'
'LDT_TO_XXX'
'LTIME_TO_XXX'
'LTOD_XXX'
'WCHAR_TO_XXX'

'XXX_TO_BIT'
'XXX_TO_CHAR'
'XXX_TO_LDT'
'XXX_TO_LTIME'
'XXX_TO_LTOD'
'XXX_TO_WCHAR'

Typisierung der
Standardfunktionen
mit neuen
Basisdatentypen:
'ADD_BIT'
'ADD_CHAR'
'ADD_LDT'
'ADD_LTIME'
'ADD_LTOD'
'ADD_WCHAR'
u.s.w.

IEC 61131-3 Compliance

17.07.2017292

IEC 61131-3 Compliance

3 Compliance Liste: Implementation-dependent parameters

Dieser Abschnitt listet die Werte der implementationsabhängigen Parameter aus [N1.1.3-Annex D] auf
[N1.1.3-Kap.1.5.1.b].

„n.a.“ kennzeichnet Fälle, wo das Sprachkonstrukt, auf welches sich der Parameter bezieht, nicht zum
Safety-Sprachumfang gehört.

Parameters Implementierung

Maximum length of identifiers 1015 Bytes (UTF-8)
Maximum comment length 1015 Bytes (UTF-8)
Syntax and semantics of pragmas gibt es nicht
Syntax and semantics for the use of the
double-quote character when a particular
implementation supports feature 4 but not
feature 2 of table 5.

gibt es nicht

Range of values and precision of
representation for variables of type TIME,

DATE, TIME_OF_DAY and DATE_AND_TIME

Precision of representation of seconds in
types TIME, TIME_OF_DAY and
DATE_AND_TIME

TIME-Werte gehen von 0 Sekunden bis 232-1 Millisekunden mit
einer Präzision von 1 Millisekunde. Sekunden werden
millisekundengenau repräsentiert.

Maximum number of enumerated values
Maximum number of array subscripts
Maximum array size
Maximum number of structure elements
Maximum structure size
Maximum range of subscript values
Maximum number of levels of nested
structures

n.a. (keine Aufzählungstypen, keine Arrays, keine Strukturen,
keine Bereichstpen)

Default maximum length of STRING and
WSTRING variables
Maximum allowed length of STRING and
WSTRING variables

n.a. (keine Strings)

Maximum number of hierarchical levels
Logical or physical mapping

n.a.

Initialization of system inputs systemspezifisch (OEM)

Maximum number of variables per declaration Keine Beschränkung
Effect of using AT qualifier in declaration of
function block instances

n.a. (kein AT)

Warm start behavior if variable is declared as
neither RETAIN nor NON_RETAIN

Alle Variablen sind NON_RETAIN

Information to determine execution times of
program organization units

systemspezifisch (OEM)

Values of outputs when ENO is FALSE n.a. (kein ENO)
Maximum number of function specifications n.a. (keine anwenderdefinierten Funktionen)
Maximum number of inputs of extensible
functions

Keine Beschränkung

Effects of type conversions on accuracy
Error conditions during type conversions

Error conditions: Fehler zur Laufzeit bei verschiedenen
Konvertierungsfunktionen, wenn Ausgangswert ist nicht im
Wertebereich des Zieltyps (siehe 4.2)

Effects: Konvertierung nach BOOL ergibt TRUE gdw.
Ausgangswert ungleich 0. Nummerische Werte bleiben unver-
ändert. Bitmuster werden um führende 0-Bits erweitert bzw.
gekürzt.

Accuracy of numerical functions Berechnungen erfolgen mit 32bit interner Genauigkeit für
Zwischenwerte. - Bei Overflow (nach oben wie nach unten) erfolgt
ein Vorzeichenwechsel.
- Bei Underflow (im Fall von Division) wird zur nächst-größeren
oder -kleinerern Ganzzahl gerundet: systemspezifisch (OEM)

Effects of type conversions between time data
types and other data types not defined in table
30

Bei Konvertierungen wird ein TIME-Wert als die Anzahl seiner
Millisekunden behandelt. Bsp:

TIME_TO_INT(t#1s) = 1000
INT_TO_TIME(1) = t#1ms

Maximum number of function block Keine Beschränkung

IEC 61131-3 Compliance

17.07.2017 293

IEC 61131-3 Compliance

Parameters Implementierung

specifications and instantiations
Function block input variable assignment
when EN is FALSE

n.a. (kein EN)

Pvmin, Pvmax of counters Pvmin = 0, Pvmax = 16#7fff
Effect of a change in the value of a PT input
during a timing operation

Erhöhung verlängert die Zeit bis zum Ablauf des Timer
entsprechend.
Erniedrigung verkürzt die Zeit. Wenn das verkürzte PT bereits
verstrichen ist, läuft der Timer sofort ab.

Program size limitations systemspezifisch (OEM)

Precision of step elapsed time
Maximum number of steps per SFC

n.a. (kein SFC)

Maximum number of transitions per SFC and
per step

n.a. (kein SFC)

Maximum number of action blocks per step n.a. (kein SFC)
Access to the functional equivalent of the Q or
A outputs

n.a. (kein SFC)

Transition clearing time
Maximum width of diverge/converge
constructs

n.a. (kein SFC)

Contents of RESOURCE libraries n.a.
Effect of using READ_WRITE access to
function block outputs

n.a.

Maximum number of tasks 1
Task interval resolution systemspezifisch (OEM)

Maximum length of expressions n.a. (kein ST)
Maximum length of statements n.a. (kein ST)
Maximum number of CASE selections n.a. (kein ST)
Value of control variable upon termination of
FOR loop

n.a. (kein ST)

Restrictions on network topology Die Grundstruktur eines FBD-Netzwerks ist ein Baum: Die Wurzel
liegt rechts und fächert sich nach links auf. Nur
Mehrfachzuweisungen fächern sich nach rechts auf.

Einschränkung für den Anwender:

- Keine expliziten Feedback-Schleifen.
- Von einem FB-Aufruf f kann er auf grafische Weise nur

einen Ausgang o1 (beliebig wählbar) auf den Eingang eines
anderen Auftrufs weiterverschalten. Weitere Ausgänge o2
kann er nur textuell weiterverschalten, indem er „f.o2“ auf
den Eingang legt.

- Den ausgewählten Ausgang o1 eines FB-Aufrufs f kann er
auf grafische Weise nur einmal auf den Eingang eines
anderen Aufrufs schalten. o1 kann er nur textuell auf einen
weiteren Eingang (des gleichen oder eines anderen
Auftrufs) schalten, indem er „f.o1“ auf den Eingang legt.

- Den Ausgang eines Operator-Aufrufs kann er nur einmal
(grafisch) auf den Eingang eines anderen Aufrufs
weiterverschalten. Um das Operator-Ergebnis mehrfach zu
verwenden, müsste der Anwender eine Zwischenvariable x
einführen und den Ausgang des Operator-Aufrufs von der
grafischen Weiterverschaltung abzweigen, um ihn auf x
zuzuweisen, und dann „x“ auf den weiteren Eingang (des
gleichen oder eines anderen Auftrufs) legen.

Evaluation order of feedback loops explizite Feedback-Loops nicht möglich,

implizite Feedback-Loops in Basic-Level verboten

IEC 61131-3 Compliance

17.07.2017294

IEC 61131-3 Compliance

4 Compliance Liste: Error Conditions

Die Fehlerbindungen in der Tabelle E.1 von Annex E [N1.1.3-Tab E.1] sind auf verschiedene Arten abge-
deckt:

• Die Fehlerbedingung wird beim Übersetzen oder zur Laufzeit geprüft.
• Die Fehlerbedingung bezieht sich auf Konstrukte, die gar nicht im Safety-Sprachumfang

enthalten sind („n.a.“), was beim Editieren oder beim Übersetzen geprüft wird.
• Nicht diagnostiziert wird der Fehler, dass das Ergebnis numerischer Operationen [N1.1.3-

Kap.2.5.1.5.2] und Zeit-Operationen [N1.1.3-Kap.2.5.1.5.6] ausserhalb des Datenbereichs
liegt. Wie es [N1.1.3-Kap.1.5.1 d] fordert, wird darauf in einem eigenen Abschnitt 4.1
hingewiesen und es werden die Fälle aufgelistet.

Error conditions Lösung

Nested comments n.a. (Kommentarfelder statt Kommentarzeichen)

Ambiguous enumerated value n.a. (kein Enum)

Value of a variable exceeds the specified subrange n.a. (kein Subrange)

Missing configuration of an incomplete address specification ("*"

notation)
n.a. (kein *)

Attempt by a program organization unit to modify a variable
which has been declared CONSTANT

Buildfehler

Declaration of a variable as VAR_GLOBAL CONSTANT in a
containing element having a contained element in which the
same variable is declared VAR_EXTERNAL without the
CONSTANT qualifier.

Buildfehler

Improper use of directly represented or external variables in
functions

n.a. (keine Funktionen)

A VAR_IN_OUT variable is not “properly mapped” n.a. (nur in implizitem Code)

Ambiguous value caused by a VAR_IN_OUT connection n.a. (nur in implizitem Code)

Type conversion errors Laufzeitfehler
Numerical result exceeds range for data type nicht erkannt

Division by zero Laufzeitfehler
N input is less than zero in a bit-shift function n.a. (kein Shift)
Mixed input data types to a selection function Buildfehler
Selector (K) out of range for MUX function Laufzeitfehler
Invalid character position specified
Result exceeds maximum string length
ANY_INT input is less than zero in a string function

n.a. (keine Strings)

bei TIME-Funktionen: Result exceeds range for data type nicht erkannt

No value specified for a function block instance used as input
variable

n.a. (kein FB als Input)

No value specified for an in-out variable n.a. (nur impliziter Code)

Zero or more than one initial steps in SFC network
User program attempts to modify step state or time

n.a. (kein SFC)

Side effects in evaluation of transition condition n.a. (kein SFC)

Action control contention error n.a. (kein SFC)

Simultaneously true, non-prioritized transitions in a selection
divergence Unsafe or unreachable SFC

n.a. (kein SFC)

Data type conflict in VAR_ACCESS n.a. (kein VAR_ACCESS)

A task fails to be scheduled or to meet its execution deadline Laufzeitfehler
Bei Instruction List: Numerical result exceeds range for data
type
Current result and operand not of same data type

n.a. (kein IL)

Bei ST: Division by zero n.a. (kein ST)
Bei ST: Numerical result exceeds range for data type n.a. (kein ST)
Bei ST: Invalid data type for operation n.a. (kein ST)
Return from function without value assigned n.a. (keine Funktionen)

Bei While und Repeat: Iteration fails to terminate n.a. (kein ST)
Same identifier used as connector label and element name n.a. (kein Connector)
Uninitialized feedback variable Buildfehler

IEC 61131-3 Compliance

17.07.2017 295

IEC 61131-3 Compliance

4.1 Compliance Liste: Nicht erkannte Fehler

Dieser Abschnitt listet in einem eigenen Abschnitt die Fehler aus [N1.1.3-Annex E] auf, welche nicht
erkannt bzw. nicht berichtet werden [N1.1.3-Kap.1.5.1.d].

Level Error conditions

Extended Numerical result exceeds range for data type
Extended bei TIME-Funktionen: Result exceeds range for data type

4.2 Zusammenfassung Laufzeitfehler

Level Sprachfeature Laufzeitfehler bei

Extended DIV Division durch 0

Extended MUX Aufruf mit erstem Input mit negativem Wert oder mit Wert N größer als die
Anzahl der Eingänge minus 1.

Z.B. MUX(2, 16#8000, 16#8001)

Extended DINT_TO_INT,
TIME_TO_DINT,
TIME_TO_INT,
DINT_TO_TIME,
INT_TO_TIME,
DINT_TO_WORD,
TIME_TO_WORD,
DINT_TO_BYTE,
INT_TO_BYTE,
TIME_TO_BYTE,
WORD_TO_BYTE

Ausgangswert ist nicht im Wertebereich des Zieltyps: Bei Konvertierung
zwischen zwei ANY_MAGNITUDE Typen muss der numerische Ausgangs-
wert im Wertebereich des Zieltyps liegen (wobei TIME-Werte als Anzahl
von Millisekunden gerechnet werden).
Bei Konvertierung von/zu Bitstring-Typen muss das Bitmuster des
Ausgangswerts ein Bitmuster der Zieltyps sein. Beispiele:

DINT_TO_INT(16#0000FFFF), weil 216-1 kein INT-Wert ist,

ebenso DINT_TO_TIME(-1), weil es keine negative TIME-Werte gibt

TIME_TO_DINT(t#365d), weil 365 Tage = 3,153,600,000ms =
16#BBF81E00 ist, und damit größer als die größte DINT-Zahl 231-1 =
16#7FFFFFFF

INT_TO_BYTE(-1), da BYTE nur 0 bis 255 umfasst,

WORD_TO_BYTE(0xFFFF), da BYTE nur bis 0xFF geht.

IEC 61131-3 Compliance

17.07.2017296

IEC 61131-3 Compliance

Literaturverzeichnis

[N1.1.3] IEC 61131, 2003-1, Programmable controllers, Part 3: Programming languages

18 Bibliography
[N1.1.3] IEC 61131, 2003-1, Programmable controllers, Part 3: Programming languages, Ed. 2
[N1.2.1] IEC 61508: Functional safety of electrical/electronic/programmable electronic safety-related

systems – Part 1: General requirements, Edition 2 (2010-04)
[N1.3d] DIN EN IEC 62061: Safety of machinery – Functional safety of safety-related electrical, elec-

tronic and programmable electronic control systems (2005-10)
[N1.4.1d] DIN EN ISO 13849-1: Safety of machinery - Safety-related parts of control systems –- Part 1

(2008-12)
[N2.1.1] PLCopen, TC 5: Safety Software (Technical Specification), Part 1: Concepts and Function

Blocks, Version 1.0 (2006-1)
[N3.1.2] PROFIsafe – Profile for Safety Technology on PROFIBUS DP and PROFINET IO, Version,

2.4, March 2007, Order No. 3.192b
[N3.1.5] PROFIsafe – Profile for Safety Technology on PROFIBUS DP and PROFINET IO, Version

2.5, December 2012, Order No. 3.192b
[N3.5.4] ETG: Safety over EtherCAT Protocol specification (ETG. 5100), Version 1.2.0, 11.03.2011
[N3.5.5] ETG: Safety over EtherCAT Implementation Guide (ETG.5101), Version 1.1.1, 14.05.2010

Bibliography

17.07.2017 297

Bibliography

17.07.2017298

19 Glossary
Acceptance of the application A case of software acceptance. Part of the machinery

acceptance. General: The acceptance of an application,
i.e. the executable unit on the controller. This does not
include the device parameters (although they are also soft-
ware). The acceptance of the application can, however, be
dependent on the acceptance of the device parameters of
the I/O devices used (device parameter acceptance), or
can take place organizationally together with it. The accept-
ance of the application (contrary to the acceptance of the
equipment parameters) typically depends on the type of con-
troller and on the version of the firmware on the controller.

API Protocol-independent application interface
With the aid of API the developer obtains access at the pro-
gramming level to each safe I/O module at the safety com-
munication level

Application Executable unit on a controller made up of program code
and associated I/O configuration

Application status of the RTS States where an application can be located on the RTS
(example: application is running, application stops, etc.; see
operating modes).

Basic Level In accordance with PLCopen a programming level with
simple, defined limited language subset. The level is
intended to be appropriate for the user who has so far car-
ried out the wiring of fail-safe modules.
Programming level that is aligned to the use of certified (or
validated) function blocks in safety application.

Boot application A boot application is created from the download application
in online mode and stored on the safety controller. It remains
on the controller after logging out and starts after restarting
the safety controller.

Channel variables Represent an input channel (input channel variable) or an
output channel (output channel variable) of a certain I/O
module

Checksum A CRC for a data flow which is determined using a certain
method. The method is parameterized by an initial value and
a polynomial. Checksums serve the purpose of safeguarding
transmitted or stored data.

CODESYS (Controller Development System) programming system from
3S-Smart Software Solutions for the programming of PLCs.
Available at present in the second generation and bearing
the version designation V3.x

CODESYS Control Safety Product name for the safety-oriented RTS of 3S-Smart Soft-
ware Solutions

CODESYS Safety Extending CODESYS V3.x with safety functionality. From a
technical point of view, this is a CODESYS instance with a
loaded safety profile that loads the safety components.

Component Software component

Glossary

17.07.2017 299

Configuration Description of the system made up of controllers and I/O
modules (both standard and fail-safe); definition of the
project structure

Confirmed connection A confirmed connection is required for every online function-
ality on site between CODESYS Safety and a safety con-
troller. With the connection confirmation the user confirms
that the network connection has connected him with the cor-
rect controller. A confirmed connection is possible in safe
mode and debug mode.

Controller PLC
Coupler Other name for slave on the fieldbus (e.g. a DP-Slave on the

PROFIBUS); connects individual I/O modules with the
fieldbus.

CRC (Cyclic Redundancy
Check)

English name for checksum

Data types Types
Debug mode (unsafe mode) State in which either a download application runs instead of

the boot application or in which the running of the boot appli-
cation was influenced or can be influenced by debug com-
mands.

Development system Development environment on a Windows PC for the creation
of programs according to IEC 61131-3 as well as software
access to controllers with CODESYS RTS.

Device description file Description of one or more devices in bus-specific format
(ESI for EtherCAT, GSD for Profibus, GSDML for PRO-
FINET).

Device parameter acceptance A case of software acceptance. Part of the machinery
acceptance. The acceptance of the safety device parame-
ters of an I/O device. The acceptance of the device parame-
ters of all the I/O devices used can be a prerequisite for the
acceptance of the safety application (see Application
acceptance). The acceptance of the device parameters typi-
cally depends on the type of device.

Difference acceptance Facilitated acceptance of an application that is a modification
of an already verified application.

Difference verification Facilitated verification of an application that is a modification
of an already verified application.

Download application Current, error-free translated safety application which is
loaded when logging in to the controller. The download appli-
cation is no longer on the controller after logging out.

DP-... Decentralized Peripherals ... To be seen in connection with
PROFIBUS and meant there as a demarcation to other
PROFIBUS variants.

DP-Master (Decentralized
Peripherals-Master)

Master on PROFIBUS DP (cyclically polls the connected
devices)

DP-Slave (Decentralized Periph-
erals-Slave)

Device on PROFIBUS DP (cyclically polled by the DP
Master); coupler on the Profibus DP

Glossary

17.07.2017300

Driver instance Instance of the protocol stack of a safe fieldbus (PROFIsafe,
FSoE) for communication with a device on this fieldbus.
From a technical point of view it is an instance, implicitly
generated by the logical device, of the function block that
implements the protocol stack.
- I/O stack variables are instances of I/O stack FBs and
implement the safety protocol and the API to an I/O module.
The input and output variables of the instance are for
accessing the status of the I/O module, not for accessing its
I/O channels.

Editor Component of the PS for editing program sections
End user (from CODESYS Safety): Developer who works on the

safety applications and/or executes them on safety control-
lers.

Error reaction Reaction of the RTS that places the plant in the safe state.
Distinction is made between the user program error
response and the system error response.

Exchange variables Variables whose values can be exchanged between a safety
application (on a safety controller) and one or more standard
applications (on connected standard controllers).

Execution version Identifier by means of which the checked compatibility
between (accepted) boot application and RTS core is con-
trolled. For compatibility with external POUs, see Implemen-
tation version
From the user's point of view the execution version corre-
sponds to the compiler version from CODESYS.
A changed version number means that something can
change in the processing of the application.

Extended Level In accordance with PLCopen a programming level with a
language subset between Basic Level and system level.

External POU POUs implemented in the runtime system
F- Prefix. Short for fail-safe
fail-safe Values of variables that ensure the safety of the plant. Fail-

safe value for variables of the data type SAFEBOOL must
be FALSE. The user must ensure that all variables of the
data type SAFEBOOL guarantee the safety of the plant. All
variables of the data type SAFEBOOL must be set to the
value FALSE both for the initialization and for a safety
requirement.
Safety-related systems are based on "negative" logic. For
example, a physical emergency stop switch is normally
closed so that current flows. If the switch is actuated, the
contact opens and the flow of current is stopped ("quiescent
current principle").

Fail-safe ability of a system to remain in, or to immediately enter a
safe state on the occurrence of a failure.

Fail-safe development system Development system on a workstation (Windows PC) for
safety programming

Glossary

17.07.2017 301

Fail-safe firmware Firmware for the operation of a fail-safe runtime system.
Consists of CODESYS Control Safety and basic functions
similar to an operating system.

Fail-safe object Object in the safety PS that represents a safety controller, a
safe I/O module or a unit of a safety application (the first
two are fail-safe devices, the latter are fail-safe logic
objects).

FB Function block
FBD Function Block Diagram, FBD
FBD Function block diagram
F-HOST System part that serves the PROFIsafe protocol for all F-

Slaves. This is typically located on a safety-related RTS.
Fieldbus device Device that implements a fieldbus protocol (e.g. PROFIBUS

DP or PROFINET) via which the process image is
exchanged. Of particular relevance are
- couplers with subordinated I/O modules
- drives, i.e. I/O modules that are typically autonomous
fieldbus devices.

Field devices Fieldbus devices
Firmware System-specific software for the operation of the runtime

system (e.g. operating system, hardware-specific adapta-
tions) plus the runtime system itself. Accordingly, the safety-
related RTS on the safety controller.

F-parameters Safety-related configuration data in case of PROFIsafe,
also called safety protocol parameter

F-slave Slave on PROFIsafe; can also be just a module of a PRO-
FIBUS DP Slave

FSoE FailSafe over EtherCAT
Function block POU according to IEC 61131-3, can call other function

blocks and be called by an application and other function
blocks.

Function block diagram A program/function written in the IEC 61131 function block
language (FBD). The language is permissible for safety pro-
gramming in Basic Level, Extended Level, and System
Level.

GVL Global variable list. A (named) list of global variables within
an application. There can be several GVLs within an applica-
tion.

HW Hardware
I/O... Concerning the input/output
I/O configuration Configuration
I/O module Hardware module with input channels and/or output chan-

nels. Distinction is made between

Glossary

17.07.2017302

- I/O modules (also called terminals or "slices") behind a
coupler that is a fieldbus device. The input or output chan-
nels of each terminal behind the coupler correspond to a
section in the process image of the coupler.
- I/O modules that are themselves fieldbus devices, e.g. the
typical drive. In this case the input or output channels of the
I/O module form the entire process image of the fieldbus
device.

I/O parameters Configuration data
IEC 61131-3 International standard for programmable logic controllers.
IEC code Program source text conforming to IEC 61131-3, i.e. IL, LD,

FBD, SFC or ST
Implementation version Identifier of an external POU by means of which the checked

compatibility between (accepted) boot application and the
implementation of the external POU is controlled. Compati-
bility with RTS core is the execution version

i-parameters Name of the safety device parameters in PROFIsafe
Library manager Object for the management of the integrated libraries in

CODESYS
Library repository Data repository of CODESYS, in which libraries are stored

with version.
Machine acceptance The acceptance of a machinery or plant consisting of hard-

ware and software. The wiring, the standard application (e.g.
reset) and the total response times of the safety functions
are to be assessed on the basis of the acceptance of the
safety application and the safety device parameters.
Compare Application acceptance

Master In general, hardware that controls other hardware (slave). In
this case, in connection with fieldbus systems, the control of
the bus.

Network variables Variable with values that are exchanged between two or
more safety controllers.

Non-reactivity In the context of the CODESYS Safety documentation, the
ability to recognize and control possible reactions of fail-safe
software functions.

NVL Network variable list. Network variables are exchanged
between safety controllers by means of network variable list
(sender) objects and network variable list (receiver) objects.

NVMem (Non-volatile memory) non-volatile memory of any desired
type, e.g. FLASH, NVRAM, EEPROM, memory card, hard
disk, etc.

Object A component of the project structure that represents a struc-
turing unit of the project.

OEM (Original Equipment Manufacturer) A manufacturer that
offers its device as well as software from 3S-Smart Software
Solutions as a complete system. Unlike a final customer,
who uses the software from 3S-Smart Software Solutions
directly, an OEM merely sells the software on.

Glossary

17.07.2017 303

Offline The programming system is not connected to the controller
in offline mode.

Online The programming system is connected to the safety con-
troller in online mode. This means that there is a connection
either to the application currently loaded to the safety con-
troller or to the boot application on the safety controller.
Debug commands can be executed in online mode.

Operating modes of the safety-
oriented RTS

States which the safety-oriented RTS can adopt and which
are important for the user. Example: Debug, system error
response, etc. Depending on the mode, different actions are
activated or deactivated. See Application status.

Parameterization Configuration of the parameters of the bus system and the
I/O modules

Pinning of an application (concept from VisualSourceSafe) The current status of the
application is kept unchanged: Changes to the application
are still possible so that the current version in the project can
deviate from the pinned version however, the deviating
objects as well as the initial version (pin) for the deviation
can be identified. Pinning is combined with the assignment
of a name for this version.

PLC Programmable Logic Controller (PLC)
PLC Programmable logic controller
PLCopen The PLCopen is a worldwide, company and product-inde-

pendent association for the spreading of the IEC 61131-3
standard.

PLCopen TC5 Technical committee TC5 of the PLCopen, which defines
standards for the programming of fail-safe controllers

POU Program Organization Unit (POU)
PROFIBUS DP (Process
Fieldbus with Decentralized
Peripherals)

Fieldbus system for the connection of I/O modules (either
directly as a PROFIBUS device or as a terminal under a
PROFIBUS device as coupler)

PROFIsafe Protocol for fail-safe communication on PROFIBUS DP and
PROFINET

Program POU according to IEC 61131-3
Programmable logic controller is the name given to a device which, by means of special

programming software, is used for the automatic control of
industrial machinery and plants

Programming interface Programming interface (API) – Interface between software
components: A module exports an interface; modules that
are to use this are programmed against this interface. In the
case of an IEC 61131-3 function block the exported pro-
gramming interface consists of its input and output variables.
To be distinguished from operating interface.

Programming level There are three different programming levels for different
safety limitations during the development: Basic Level,
Extended Level, and system level. Basic and Extended
Level are defined by the PLCopen or by the corresponding
specifications of CODESYS Safety.

Glossary

17.07.2017304

Program Organization Unit Object in the project structure that represents software (and
not devices/modules) POU

Project A project can contain several controllers with their subordi-
nate objects. These can be safety and/or standard control-
lers that control a plant or a machine. Stored in CODESYS
V3.x in the project file.

Project file File containing the project data, but without libraries and
device descriptions (xxx.project)

PS Development system
RTS Runtime system
RTS software Synonym for RTS
Runtime system Software component of the PLC. As part of the firmware,

the RTS is responsible for the implementation of the control
logic.

Safe I/O module An I/O module that implements a safe I/O protocol and can
be used in the safety programming. In a safety application
the utilizable data of the I/O channels of safe I/O modules
are of one of the SAFExxx data types.

Safe I/O protocol (e.g. PROFIsafe V1.3), a protocol for the use of safe I/O
telegrams over standard fieldbuses, so that an unambiguous
identification of the I/O module is possible.

Safe I/O telegram (e.g. PROFIsafe telegram), the coding of the values of the
I/O channels of a single, safe I/O module together with addi-
tional information as a section into the process image of a
standard fieldbus device (e.g. a PROFIBUS DP or PRO-
FINET coupler).

Safe mode State in which the boot application runs uninterrupted
Safety address (of the I/O module), the addressing of the I/O module within

its fieldbus protocol set by means of parameterization (in the
case of PROFIsafe: the "F-address" F_Dest_Add).

Safety application Fail-safe application for execution on a fail-safe controller
Safety config data Summarizing term for those config data of an I/O module

that are relevant for the safety application or safety con-
troller.
The safety device parameters are not called safety config
data.

Safety controller A PLC that (usually) offers increased fail-safety through spe-
cial hardware extensions (e.g. two processors with opposite-
acting process observation) and accordingly adapted soft-
ware.

Safety device description Description of parameter sets with which a device can be
configured. Safety protocol parameters and safety device
parameters occur within the scope of CODESYS Safety.

Safety device parameters Processed parameter set which is not loaded to the safety
controller, but only to the device. Known as I-parameter in
the PROFIsafe context.

Safety devices Fail-safe application for execution on a fail-safe controller

Glossary

17.07.2017 305

Safety protocol parameters Parameters of a safe I/O protocol
Safety PS, safety programming Entirety of the activities for the creation of safety applica-

tions; programming of fail-safe controllers.
SAFExxx Family of data types with the prefix SAFE in accordance with

PLCopen. e.g. SAFEBOOL, SAFEINT
Second generation of a boot
application

An application in the project, from which a boot application
has already been generated on a PLC (in particular for
tests), is made unchanged into a boot application on a fur-
ther PLC.

Slave Hardware that is subordinate to a master by which it is con-
trolled or supplied with data.

Source control External program for the administration of object data out-
side of CODESYS. In addition to the actual source data
visible to the user, these can also contain data for the admin-
istration of these sources within CODESYS. Synonymously
used with the term 'version administration'.

S-PLC Fail-safe PLC
Standard ... Prefix:

- as opposed to fail-safe
- as opposed to safety-specific, e.g. standard software,
standard component, standard view.

Standard CODESYS CODESYS without additions, as delivered. From a technical
point of view it is a CODESYS instance into whose profile
the safety extension in particular is NOT loaded.

SW Software
System error reaction Reaction of the safety runtime system to a system error.
Task Temporal sequence unit of a software

- IEC task: In IEC programming a "task" designates a tem-
poral sequence unit of an IEC application. Only one task can
be configured in a fail-safe application.
- RTS task: The runtime system contains tasks for the exe-
cution of the IEC task(s) and for the execution of other func-
tions.
All tasks contained in the runtime system are provided by
the OEM, since the runtime system itself contains no task
management. The runtime system provides the entry points
for the required tasks, executes the intended functions in the
context of the respective task and then returns.

Task configuration In the task configuration for a fail-safe controller the cycle
time of the task and the order of the applications to be pro-
cessed in the task are defined by the user.

Teleaccess Teleaccess is used for PLC diagnosis and it is possible in
safe mode only. The following functionalities are available
during teleaccess:
n Show and save log
n Display PLC details and firmware details

Glossary

17.07.2017306

n Login for equality to the project (no download)
n Monitoring

Terminal Other name for I/O modules behind a coupler
Two-channel online service An online service that is executed in the context of the back-

ground task on both RTS channels, but not synchronously to
each another.

Two-channel synchronous
online service

An online service that is executed on both RTS channels
synchronously with the execution of the application.

Type consistency Property of a construct in the IEC code that the types of the
variables or values occurring in it match.
1. The construct VAR_EXTERNAL declaration is type-con-
sistent if there are the same variables as the VAR_GLOBAL
declaration of these variables.
2. The construct "initialization" of a variable with a value or
assignment of a value to a variable is type-consistent
a. if a value and variable are the same type, or
b. if the value is type SAFE-X and the variable is type X, or
c. if the value is type INT and the variable is type DINT, or d.
if the value is type SAFEINT and the variable is type SAFE-
DINT or DINT.
3. The construct FB call (box with FB names) is type-consis-
tent if the name of the FB is the same as the type of the FB
instance above it and if the assignments of the input values
to input variables are type-consistent.
4. The type consistency of the construct "operator call" (box
with operator names) depends on the operator: calls of a
conversion (X_TO_Y) are type consistent when the input
value is type X or SAFE-X.
Calls of Boolean operators (AND/OR/XOR/NOT) are type-
consistent if the input values have the types BOOL or SAFE-
BOOL.
Calls of mathematical operators
(ADD/SUB/MUL/DIV/LT/LE/GT/GE) are type-consistent if the
input values have the types INT, DINT, SAFEINT or SAFE-
DINT; beyond that a call of MUL and DIV is also type-consis-
tent if the first input value has the type TIME or SAFETIME
and only the other input values have the type INT, DINT,
SAFEINT or SAFEDINT.
Calls of the general comparison operators (EQ/NE) are type-
consistent if the input values are type-consistent among one
another (see below). Calls of the selection operator SEL are
type-consistent if the first input value has the type BOOL or
SAFEBOOL and the other input values are type-consistent
among one another.

Glossary

17.07.2017 307

Calls of the selection operator MUX are type-consistent if the
first input value is type INT, DINT, SAFEINT or SAFEDINT
and the other input values are type-consistent among one
another. Several input values are type-consistent among one
another: a. if they have the same type, or b. if they have
partly the type T and partly the type SAFE-T, or c. if they
have the types INT, DINT, SAFEINT or SAFEDINT.
5. The constructs 'Conditional jump' and 'Conditional return'
are type-consistent if the input value is BOOL or SAFE-
BOOL.

Types Distinction is made between the following sub-types in the
safety programming:
- FB types: Names of function blocks as types of variables
(FB instances)
- Boolean types: BOOL, SAFEBOOL (for truth and bit
values)
- Numeric types: INT, DINT, SAFEINT, SAFEDINT (for fac-
tors and divisors)
- Bit access types: WORD, BYTE, DWORD, SAFEWORD,
SAFEBYTE, SAFEDWORD
- Arithmetic types: INT, DINT, SAFEINT, SAFEDINT, TIME,
SAFETIME (for operands of arithmetic operations)

User interface Interface between humans and software. In particular the
graphic user interface between the programming system to
the user. To be distinguished from the programming inter-
face.

User program error reaction Error response programmed by the user in the application.
Validation Check whether the completely generated and verified

product meets the demands placed on it
Verification Check whether the created documents and software (func-

tions, modules and components) satisfy their specifications
(or their superordinate specifications).

Glossary

17.07.2017308

20 Index
1, 2, 3 ...
1oo1 input devices - safety 132
1oo2 input devices - safety 132

A
acceptance . 199
acceptance documentation 199
acceptance documentation printout 207
access

network variables . 136
admin password . 222
allocation . 30
application state . 158
Archiving . 204

B
boot application info . 226
boot application password 222
browse cross-references 189

C
check against specification 185
code documentation . 94
CODESYS version . 214
cold reset . 168
commands permitted, safety 275
communication error frequency, safety 224
configuration differences 229
configure installation . 13
connection status diagnosis 229
CRC of an object . 51
create boot application 156
cross-reference list, safety 189

D
data exchange between the safety controller
and the main controller . 67
data flow analysis . 189
data types . 110
debug machinery . 234

debug mode . 161
decommissioning . 237
delete admin password 237
delete boot application 232
device repository . 46
Device update . 211
download . 152
driver instance - safety 247
dynamic verification . 191

E
error frequency communication, safety 224
exception, safety . 15
Exception, Safety . 224
Execution version . 212
extendable operators . 123

F
FB version . 241
fieldbuses - general section - safety 247
firmware info . 226
Firmware version . 212
flow control . 164
force . 166
FSoE

evidence for acceptance 261
FSoEMaster . 259
Function block call . 130

G
go to definition . 189

H
hardware exchange . 235

I
I/O replacement values 229
identification of the safety application 230
insert input . 123

Index

17.07.2017 309

J
jump label . 128

L
leave operating mode, safety 234
libraries . 48
library manager . 84
literal constants . 110
log . 227
logical I/O administration 46
logical I/Os . 60
login . 152
logout . 152

M
main controller access protection safety 219
modifiers . 110
Monitoring . 163
Monitoring in the case of runtime error 163

N
NetVarReceiver . 263
NetVarSender . 263
network variables . 83, 136
network variables, total response time 31
NonSafeIO . 64, 67

O
object list . 51
operating mode leave, safety 234
operating state . 158

P
permitted commands, safety 275
permitted views, safety 278
pin . 173
pin CRC . 51
POU . 75
preparation for verification 173
print

comparison view . 239

project compare . 239
safety cross reference list 239

procedure in operation 230
PROFIsafe

evidence for acceptance 257
PROFIsafe F-parameters 254
PROFIsafe i-parameters 254
PROFIsafeHost stack . 253
programming . 89
project compare . 243
Project tree . 49

R
re-use . 240
Reaction time . 163
replacement values . 229
replacement values, exchange variables 229
reset application . 168
reset origin . 237
reset origin of boot application 237
runtime error in case of overrange 123

S
Safe configuration . 72
safe device administration 46
safe devices . 46, 60
Safe parameterization . 72
safety

version list of function blocks 267
safety - IEC 62443 safety 219
safety access protection 46
safety admin password . 46
safety controller . 49
safety controller access protection 219
safety controller diagnosis 229
safety error, safety . 15
Safety error, Safety . 224
Safety GVL . 81
safety library FB version history 267
Safety Logic . 51

Index

17.07.2017310

safety pinning . 173
Safety Task . 79
safety user management 43
safety-relevant error, safety 15, 224
SafetyNetVar . 263
sampling rate . 138
Source control access protection 46
Standard field device – Safety 64
standards . 19
start . 168
start boot application . 232
static verification . 182
static verification of programming guidelines . . . 183
stop . 166, 168
structure comparison . 243

T
T1 . 29
T2 . 29
T3 . 29
Task configuration . 141

U
undefined error, safety . 15
Undefined error, Safety 224
undersampling . 138
update firmware . 235
Updating a device . 211

V
variable declaration 86, 110
variable types . 110
verification

safety . 179
verification, system plan 182
version . 13
version list of function blocks

safety . 267
views permitted, safety 278

W
Warranty and liability

Safety SIL3 . 11
write . 166
writing two several PLCs 161

Index

17.07.2017 311

	Table of contents
	1 Introduction
	1.1 Objective of this manual
	1.2 Scope of this manual
	1.3 Classification into the information landscape

	2 Requirements and general information
	2.1 Intended use
	2.2 Qualified personnel
	2.3 Warranty and liability
	2.4 General safety notices
	2.5 System requirements
	2.6 Correct version and configuration of the CODESYS Safety development system
	2.7 Handling error messages from CODESYS Safety

	3 Norms and standards
	4 Planning the overall system
	4.1 Planning devices and allocation
	4.2 Planning response times
	4.3 Planning the addresses

	5 Software development with CODESYS Safety
	5.1 General information
	5.2 Setting up a safety project
	5.2.1 Prepare planned devices
	5.2.2 Setting up the safety application
	5.2.3 Setting up user management in the project
	5.2.4 Setting up the admin password on the controller
	5.2.5 Access protection with link to source control

	5.3 Device administration
	5.4 Libraries
	5.5 Project structure
	5.5.1 Insertion of a safety controller into the project tree
	5.5.2 Safety controller
	5.5.3 Safety Logic
	5.5.4 Safety application
	5.5.4.1 Safety application object
	5.5.4.2 Logical I/Os
	5.5.4.2.1 Overview of logical I/Os
	5.5.4.2.2 Usage types of the logical I/Os
	5.5.4.2.2.1 Logical I/O of a safe physical device
	5.5.4.2.2.2 Logical I/O of a standard field device
	5.5.4.2.2.3 Logical I/O for data exchange with the main controller (standard controller)

	5.5.4.2.3 Editor of the logical I/Os
	5.5.4.2.3.1 Information and I/O mapping
	5.5.4.2.3.2 Safe parameterization and safe configuration

	5.5.4.2.4 Use of logical I/Os in the project

	5.5.4.3 POUs
	5.5.4.4 Safety Task
	5.5.4.5 Global Variable List (GVL)
	5.5.4.6 Network variables - Communication between safety controllers
	5.5.4.7 Library manager

	5.6 Variable declaration

	6 Programming
	6.1 Overview of programming
	6.1.1 Language elements
	6.1.2 Deviations of the language elements from PLCopen Safety
	6.1.3 IEC 61131-3 conformity
	6.1.4 Differences of programming in standard CODESYS

	6.2 Programming guidelines
	6.2.1 Recommendations for the documentation of the code
	6.2.2 Rules for identifiers of safety objects and variables
	6.2.3 Defensive programming
	6.2.4 Design rules for PLCopen-compliant function blocks
	6.2.5 Rules for using PLCopen-compliant function blocks
	6.2.6 Automatically checked programming guidelines

	6.3 Programming of the application logic
	6.3.1 GVL
	6.3.2 POUs
	6.3.3 Variables
	6.3.3.1 In general about variables
	6.3.3.2 Data types
	6.3.3.3 Variables for Basic POUs
	6.3.3.4 Variables for Extended POUs

	6.3.4 Networks
	6.3.4.1 Overview of networks
	6.3.4.2 Data flow and assignments
	6.3.4.3 Operators
	6.3.4.4 Jump/return and jump label
	6.3.4.5 FB calls

	6.4 Linking of I/O devices
	6.4.1 Access to Input and Output Signals
	6.4.2 Linking digital 1oo1 and 1oo2 Input Devices
	6.4.3 Monitoring of digital input and output devices
	6.4.4 Linking of input devices

	6.5 Cross-communication with network variables
	6.5.1 Sampling rate and undersampling

	6.6 Task configuration
	6.7 Examples
	6.7.1 Programming example for Basic Level

	7 Application generation and online mode
	7.1 Introduction
	7.2 Connection to the safety controller
	7.2.1 Communication settings general information
	7.2.2 Connection setup
	7.2.3 Device name

	7.3 Log in to the controller and switch it to debug mode
	7.4 Creation and restart of the boot application
	7.5 Operating modes
	7.5.1 Operating state and application state
	7.5.2 Debug mode and organizational safety
	7.5.3 Exiting the application

	7.6 Monitoring and debugging
	7.6.1 Monitoring
	7.6.2 Flow control
	7.6.3 Debug mode of the safety controller
	7.6.4 Debug commands: Write/Force
	7.6.5 Debug commands: Start/Stop and Reset application

	7.7 Online information from the safety controller
	7.8 Coordination with the Main Controller

	8 Pinning the software
	9 Software verification
	9.1 Introduction
	9.2 Requirements of verification/validation
	9.2.1 PL-e safety applications
	9.2.2 SIL3 safety applications

	9.3 Static verification
	9.3.1 Static verification
	9.3.2 Device configuration and communication interface
	9.3.3 Automatic checking of the programming guidelines
	9.3.4 Manual checking of the programming guidelines
	9.3.5 Manual check of POU use
	9.3.6 Application-specific checks
	9.3.6.1 Check against the specification
	9.3.6.2 Using cross-reference list and go to definition
	9.3.6.3 Global control flow analysis
	9.3.6.4 Local control flow analysis in the Extended Level
	9.3.6.5 Data flow analysis

	9.4 Dynamic verification
	9.4.1 Dynamic verification and validation
	9.4.2 Online tests
	9.4.2.1 Monitoring of variables
	9.4.2.2 Online test in the Extended Level

	9.4.3 Complete functional test of the application
	9.4.4 Verification in the finished machinery

	10 Software acceptance and documentation
	10.1 Introduction
	10.2 Conditions and proofs for the acceptance
	10.3 Functions for the acceptance
	10.3.1 Archiving
	10.3.2 Printing project documentation

	10.4 Documentation for operators and integrators

	11 Software update
	11.1 Overview of versioning
	11.2 Updating the device version
	11.3 Updating the firmware and execution version
	11.4 Updating the CODESYS version
	11.5 Extension of CODESYS with packages

	12 Operation
	12.1 IT security during operation
	12.1.1 Security measures in the environment of the safety controller
	12.1.2 Security measures in the safety controller
	12.1.3 Protection of the safety controller against write access
	12.1.4 Protection of the safety controller against teleaccess
	12.1.5 Monitoring security-relevant results

	12.2 Monitoring errors during operation
	12.2.1 Increased communication error frequency
	12.2.2 User behavior for error messages

	12.3 Diagnosis of errors during operation
	12.3.1 Connection to the safety controller for teleaccess
	12.3.2 Information on firmware and boot application
	12.3.3 Log: Diagnosis of system and runtime errors
	12.3.4 Status: Communication diagnosis

	12.4 Administration with CODESYS
	12.5 Procedure for maintenance
	12.5.1 Temporary mode change to unsafe mode

	12.6 Maintenance and service
	12.6.1 Installing a new boot application
	12.6.2 Installing the firmware update
	12.6.3 Hardware exchange

	12.7 Changes to networks and fieldbuses
	12.8 Procedure for decommissioning and removing the safety controller

	13 Procedure in case of changes to, and re-use of the accepted software
	13.1 Procedure in case of changes to, and re-use of the software
	13.2 Re-use of an accepted safety project
	13.3 Re-use of function blocks
	13.4 Changes in the project
	13.4.1 Changes in the project
	13.4.2 Changes in projects with cross-communication

	14 Fieldbuses and network variables
	14.1 General section
	14.2 PROFIsafe
	14.2.1 Library Safety PROFIsafeHost
	14.2.2 PROFIsafe parameters: F-parameters and i-parameters
	14.2.3 PROFIsafe specific evidence for the acceptance

	14.3 FSoE
	14.3.1 Library Safety FSoEMaster
	14.3.2 FSoE parameters
	14.3.3 FSoE specific evidence for the acceptance

	14.4 Network variables
	14.4.1 Library 'SafetyNetVar'
	14.4.2 Safety NetVar parameters
	14.4.3 Safety NetVar specific evidence for the acceptance

	15 Predefined function blocks
	15.1 Version list of the function blocks
	15.1.1 Notes About Version Lists
	15.1.2 Applicative libraries
	15.1.3 Driver Libraries

	15.2 Specific Safety Notes for Applicative Library Function Blocks

	16 List of permitted or modified functions
	16.1 Permitted commands
	16.2 Permitted views
	16.3 Modified standard functions

	17 IEC 61131-3 Compliance
	18 Bibliography
	19 Glossary
	20 Index

